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The Quantum Hall Effects

Large set of peculiar phenomena in two-dimensional
electron systems, at low temperatures in strong magnetic
fields.

Usually: electrons in semiconductor structures: e.g.
electrons trapped in a thin layer of GaAs, surrounded by
AlGaAs.

Very recently: QHE seen in graphene: single atomic layer
of graphite.

Samples can differ widely in electron densities and
freedom from defects. Magnetic fields range from 0.1 to
45 Tesla.



Repeated surprises

Experiments have produced many surprises since the
discovery of the Integer Quantized Hall Effect, in 1980.

Understanding has required concepts and mathematical
techniques from all corners of theoretical physics,
including some completely new ideas.

The goal of this talk is to review  a few aspects of the
quantized Hall effects, and show how our understanding
of these phenomena stems from the work of L. D.
Landau.



Hall Geometry

Hall resistance:   RH=Vy / Ix
Longitudinal Resistance:   Rxx= Vx / Ix



Integer QHE

Discovered by Klitzing
et al, 1980.

These figures from
Paalanen et al, 1981



Integer QHE (continued)

On the plateaus:   1/RH = ν e2/h

where ν  is an integer (different on different plateaus)

h/e2 = 25, 812.02 ohms.

Independent of precise shape of sample, choice of
material, etc.



Fractional Quantized Hall Effect

Discovered by Tsui, Stormer and Gossard (1982)

In samples of very high quality, in very strong magnetic
fields, one finds additional plateaus, where

RH
-1

 = ν e2/h

But  ν  is a simple rational fraction, usually with odd
denominator.

Originally ν = 1/3, 2/3.  More recently include

ν = 4/3, 5/3, 1/5, 2/5, 3/5, 3/7, 4/7, 4/9, 5/9 , others



What about even denominator fractions?

For most even-denominator fractions, quantized Hall
plateaus are not observed.  E.g., there is no quantized Hall
plateau in a single layer sample at ν = 1/2. RH and Rxx vary
smoothly with magnetic field. Yet, there are strong anomalies
seen in other properties, such as the Surface Acoustic Wave
velocity.  So  there is still something very strange occurring:
“Unquantized Quantum Hall Effect”.

Quantized Hall plateaus have been found corresponding to a
few even denominator fractions; e.g., ν = 5/2 . The nature of
this plateau is still a matter of debate, and active current
research.





L. D. Landau, 1930*

“Diamagnetism of Metals”  (Z. Phys. 64, 629)

Solved the quantum mechanical problem of energy
states of a charged particle in a uniform magnetic
field.

Showed that in a three-dimensional metal, leads to
orbital diamagnetism:  on average the kinetic energy
of the electrons is increased, by the magnetic field.
Magnetic moment points in opposite direction to field.

At low temperatures, in very clean samples, there are
additional effects, oscillatory in the magnetic field.

* (Age 22)



Landau Levels in 2-Dimensional Systems

Consider non-interacting electrons in uniform magnetic
field B in 2D.

In quantum mechanics, energy levels are quantized into
“Landau levels”, with

En = h νC (n+1/2) ,    n = 0, 1, 2, 3, ....

The number of independent orbits, in each Landau level is
equal to the number of flux quanta: NB ≡ B e Area / h

Define Landau level filling factor  f = Ne / NB = (ne/B)(h/e) .

If f is an integer, Fermi level is in an energy gap, between
two Landau levels.



Conditions for Quantized Hall Effect
(Integer or Fractional)

In general, the conditions for a 2D electron system to have a
quantized Hall plateau, with RH

-1 = νs e2/h  are that

1. The Fermi level of an ideal system, without impurities,
should lie in an energy gap when f = νs  , and

2. The amount of disorder in the actual sample should be
sufficiently small that the energy gap has not been wiped
out.

For non-interacting electrons, this explains why there should
be a quantized Hall effect for integer values of ν, in high-
mobility samples  But why are there fractional quantized
Hall plateaus?



Fractional quantized Hall states
Fermi energy is the middle of a partially filled landau level. For
non-interacting electrons there is no energy difference between
the highest filled states and the lowest  empty states.   Energy gap
must come from electron-electron interactions.

Detailed explanation: Laughlin (1983) and subsequent work by
many people.

FQHE states are strongly-correlated many-body states with very
peculiar properties.  E.g., elementary charged excitations are
quasiparticles with fractional electric charge.

Also obey fractional statistics (properties intermediate between
bosons and fermions).  In some cases perhaps non-abelian
statistics, even weirder and more interesting.



Explanations for the Fractional Quantized
Hall Effect

Many approaches.

Earliest methods:  Trial wave functions:

Laughlin (1983);  ……….  Jain (1989)

Here discuss:

Fermion-Chern-Simons approach

Used by Lopez and Fradkin and others for Fractional
Quantized Hall states (~1990);  Halperin, Lee and Read
(1992) for Unquantized Quantum Hall effect at f=1/2.
(Based on Jain’s ideas of “Composite Fermions”.)



Fermion-Chern-Simons Approach

Begins with a unitary transformation (singular gauge
transformation which leads to a transformed
Hamiltonian (units where e=hbar=1):

H = ∑j |pj + Aj - aj|2 /2m  + VCoulomb

where Aj ≡ A(rj) is the vector potential due to the
external magnetic field, felt by particle j,  and aj is a
fictitious “Chern-Simons” vector potential, introduced by
the transformation, which depends on the positions of
all the other electrons,in such a way that

b(r) ≡ ∇ × a(r) = 4π ∑j δ(r-rj) .

This attaches two quanta of ficitious flux to each
electron. Transformation preserves Fermi statistics.



Mean-Field Approximation
(Hartree Approximation)

Replace true Chern-Simons magnetic field b by its
average value  <b> = 4 π ne .

Replace Coulomb interaction by the average electrostatic
potential, which is just a constant for a homogeneous
system. (We can choose constant = 0).

Get free fermions in an effective magnetic field

ΔB = B - 4 π ne .

Define effective filling p ≡ 2π ne / ΔB.  Compare to true
filling factor f = 2 π ne / B.

Find  p-1=f -1 -2 ,   or:    f = p / (2p+1).





Landau Levels within Landau Levels
So Fractional Quantized Hall States are understood as
filled Landau Levels of particles in a fictitious magnetic
field, within a partially-full Landau Level of the true
magnetic field.

The fictitious magnetic field is an emergent
phenomenon, an effective interaction that emerges from
the collective behavior of the electrons.

Analogous to the way electrons in a solid can interact
with each other by means of phonons.



If the electron filling fraction is f=1/2

Mean-field ground state = filled Fermi Sea    kF = (4 π ne)1/2

If this is correct, then there is no energy gap,  no QHE.

Should be able to calculate all properties of ν=1/2 state using
perturbation theory, starting from the mean field state.
Perturbations include effects of v(ri-rj) and fluctuations in the
Chern Simons field  Δbi  ≡  bi - < b > .

Fluctuations are crucial in calculating transport and dynamic
properties, as well as for understanding the energy scale for
excitations

2 flux quanta of actual magnetic field per electron.

Effective magnetic field = B - <b> = 0.



Why should perturbation theory
work?

For the quantized Hall states, where the mean field theory
predicts an energy gap between the ground state and
excited states, it is reasonable that perturbation theory
should converge: if perturbation is not too strong, will not
destroy the energy gap or change the character of the
ground state.  We find that fluctuations reduce the energy
gap significantly, but do not generally drive it to zero.

But what about ν=1/2, where there is no energy gap?



Landau’s theory of Fermi liquids

ZhETF  30, 1058 (1956);  32, 59 (1957);   35, 97 (1958).

Interacting Fermi liquids (in 3D, no magnetic field) can
behave in many ways like weakly-interacting fermions.
Elementary excitations are quasiparticles, with well-
defined momenta, related adiabatically to the original
fermions, but with renormalized effective mass. Lifetimes
are very long for low energy quasiparticles (momenta
close to the Fermi surface). There is a sharp  Fermi
surface, whose volume is not renormalized.  Residual
interactions among the quasiparticles are important for
collective response to an external perturbation (such as a
magnetic field coupling to the spins) and for dynamics:
can produce collective modes such as zero sound.



Landau’s theory of Fermi liquids (continued)

Other features:

There is a finite overlap between wave function for a
quasiparticle and wave function for a bare particle
added to the ground state.

At least in the case of short-range interactions, the
charge of the quasiparticle is the same as that of the
bare particle.

Reason perturbation theory works is that even though
there is no energy gap in the unperturbed system, the
density of states for particle-hole excitations is very
small at low energies.  So if interactions are not too
strong, & not too singular at small momentum transfer,
scattering of low-energy particles can be very small.



Fermi liquid at f=1/2
Chern-Simons gauge interactions between transformed
fermions at f=1/2 are singular at small momentum transfers.
Find that a sharp Fermi surface can and does exist, but Fermi
liquid is “marginal”, and has many peculiar properties.

Effective mass m* is predicted to diverge (logarithmically) at
low energies.

Electric charge of quasiparticles is renormalized to zero, but
quasiparticles have an electric dipole moment

d = h εz × p / Be

It costs no energy to add a constant K to the momenta of all
particles.  In Landau theory, this energy is

δE = Ne  K2 (1+F1) / 2m*  , where F1 is the Landau interaction
coefficient for l =1.   So we have 1+F1=0 (marginal case).



Results for f=1/2 (with no impurities)

Electron system is compressible.

Fluctuations in the electron density relax very slowly at
long wavelengths.  Relaxation rate obeys

γ  ∝ q2,  for unscreened Coulomb interactions

γ ∝ q3,  for short range interactions.

Longitudinal electrical conductivity at finite wave vector
obeys  (in absence of impurities)

σxx(q) ∼ (e2/4h) (q / kF)        (Nonlocal)



Longitudinal conductivity σxx(q) is
measured in a Surface Acoustic Wave

experiment
q= wavevector of sound wave.

Anomaly in  SAW propagation at f=1/2,  was observed by Willett
and coworkers in 1990 and subsequent experiments.

Find: conductivity increases linearly with q when 1/q is smaller
than mean free path for scattering of composite fermions due to
impurties -- as predicted by Fermion+Chern-Simons theory.

Quasiparticles can travel in a straight line for distances of order of
a micron, 100 times larger than the cyclotron radius for electrons
in the applied magnetic field



What about quantized Hall plateau
seen at f=5/2 ?

Possible explanation proposed by Moore and Read,
(1991), based on “Pfaffian” trial wave function, implies
very peculiar properties, including quasiparticles with
“non-abelian statistics.”  Ground state in presence of 2N
quaisparticles has degeneracy 2N-1. States are
multiplied by non-commuting unitary transformations
when positions of quasiparticles are interchanged.
Supported by numerical calculations, but little
experimental evidence that this description is correct.

How can we understand Moore-Read state in terms of
Fermion-Chern-Simons Approach?



At f=1/2, depending on the short-distance
interactions between fermions the Fermi

surface may be unstable, e.g.,  to
 formation of p-wave superconductivity

If a superconducting energy gap forms at the Fermi surface,
then state is stabilized at precisely f = 1/2.  Deviations in
filling fraction => Beff ≠ 0 => requires vortices, costs finite
energy.

Then would get plateau in Hall conductance at f = 1/2 :
fractional quantized Hall state, with non-abelian statistics.

Apparently:  Superconductivity does not occur for electrons in
the lowest Landau level (f = 1/2 ) but does occur for electrons
in the second Landau level  (Total f = 5/2).



Moore-Read quasiparticle <=> vortex
in superconductor

By Meissner effect, vortex must bind 1/2 quantum of magnetic
flux to have finite energy. With a Chern-Simons gauge field, the
source of magnetic flux is  charge, rather than current.

1/2 quantum of Chern-Simons flux requires 1/4 electric charge.

Quasiparticles acquire non-abelian statistics due to zero-energy
states of vortices.
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