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Abstract. The localization-disorder paradigm is analyzed for a specific system of weakly repulsive Bose gas at zero
temperature placed into a quenched random potential. We show that, at low average density or weak enough interaction
the particles fill deep potential wells of the random potential whose radius and depth depend on the characteristics of the
random potential and the interacting gas. The localized state is the random singlet with no long-range phase correlation. At
a critical density the quantum phase transition to the coherent superfluid state proceeds. We calculate the critical density in
terms of the geometrical characteristics of the noise and the gas. In a finite system the ground state becomes non-ergodic at
very low density. For atoms in traps four different regimes are found, only one of it is superfluid. The theory is extended to
lower (1 and 2) dimensions. Its quantitative predictions can be checked in experiments with ultracold atomic gases and other
Bose-systems.

This article is an extended version of a presentation delivered by one of the authors (V.L.P.) at a Conference on Modern
Trends in Theoretical Physics dedicated to the Lev Landau Centenary (Chernogolovka, Russia, June 2008).
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INTRODUCTION

This article is a tribute to the memory of the great physi-
cist Lev Davidovich Landau to centenary of his birth-
day. He remains unsurpassed in introduction of new, ex-
tremely general and simple notions, such as spontaneous
symmetry breaking and density matrix which enlight-
ened many different branches of physics, chemistry and
biology. The famous course of theoretical physics by
Landau and Lifshitz is a necessary office attribute of any
physicist, experimenters as well as theorist, postdocs and
graduate students as well as professors. The course was
started in 1940-th and it is still demanded. The reason of
this unprecedented longevity is the Landau’s unique and
universal view of the entire physics unifying seemingly
disconnected its branches into a single science. We all
are his pupils.

The interplay between interaction and disorder is an
important paradigm of condensed matter physics. In
1958 Anderson[1] showed that in disordered solids a
non-interacting electron may become localized due to
the quantum interference. A phenomenological theory
of localization[2, 3] concluded that non-interacting elec-
trons in one and two dimensions are always localized.
In three dimensions the localized and extended states are
separated by the mobility edge. States with energy signif-
icantly below this edge in 3 dimensions are strongly lo-
calized. They appear in rare fluctuations of the quenched
random potential[4, 5, 6]. These instanton-type states

broaden and eventually overlap with growing energy. A
system of non-interacting fermions in the random po-
tential transits from the insulator to metal state when its
Fermi energy exceeds the mobility edge. Thus, the Pauli
principle delocalizes fermions in 3 dimensions, but leave
them localized in lower dimensions. The common belief
is that the repulsive interaction suppresses the localiza-
tion. So far this problem was studied only in the limit of
a weak disorder[7, 8]. Therefore, the interaction induced
delocalization transition remains beyond the frameworks
of the theory. The metal-insulator transition in 2 dimen-
sions was observed in experiments[9] suggesting the de-
cisive role of interaction.

The physical picture changes drastically for bosons.
The non-interacting bosons condense at a single-particle
state with the lowest energy. In a homogeneous sys-
tem it leads to a coherent quantum state known as
the Bose-Einstein condensate (BEC). Examples are
superfluid phases of He[10], superconductors [11],
BEC of ultra-cold alkali a toms[12, 13], excitons in
semiconductors[14] and spin waves in magnets [15].
BEC still persists when a small amount of disorder
is added to the system. BEC in a random environ-
ment was observed in the superfluid phase of 4He
in Vycor glass or aerogels[17] , in 3He in aerogels
[18] and in ultra-cold alkali atoms in disordered traps
[19, 21, 20, 22, 23, 24, 25].

In a random environment and in the absence of in-
teraction, all Bose-particles fall into the lowest localized



single-particle state. Such a ground state is non-ergodic
since its energy and spatial extension depend on a spe-
cific realization of the disorder. An arbitrary small re-
pulsive interaction redistributes the bosons over multi-
ple potential wells and restores ergodicity. Hence, con-
trary to the fermionic case, the perturbation theory with
respect to the interaction strength is invalid. At low tem-
perature, the Bose systems display superfluidity provided
the density n of bosons exceeds a critical value nc. At ei-
ther weak disorder or strong interaction, i.e. at n À nc,
the disorder corrections to the superfluid density ns (and
the condensate density n0) are small[26, 27, 28] . These
correction blow up with the interaction decreasing, sig-
naling the breakdown of the theory.

We present an alternative approach to the problem
of the interaction-induced delocalization starting from
deeply localized state of the Bose-gas in a random poten-
tial. We present a simple and visual picture of the deeply
localized state, which decays into remote weakly coupled
fragments. We give a geometrical description of frag-
ments and their distribution in space. At a critical density
nc, which we express in terms of the disorder character-
istic and interaction strength, the increasing tunneling of
particles between fragments leads to transition from the
random singlet state to the coherent superfluid.

SINGLE-PARTICLE LEVELS IN AN
UNCORRELATED RANDOM

POTENTIAL

The random environment produces a random potential
U(x) for the bosons. In this section we assume that U(x)
is Gaussian distributed with zero average and short range
correlations

〈
U (x)U

(
x′

)〉
= κ2δ (x−x′) (1)

The probability to find the random potential U(x) in a
volume Ω is the product of independent probabilities in
each point (we write it for a 3d system):

W0 [U (x)]=
∫

exp
(
− 1

2κ2

∫

Ω
U2 (x)dx

)
∏
x∈Ω

[(
∆Ω

2πκ2

)1/2

dU (x)

]

(2)
In the absence of interaction the single-particle wave
function ψ (x) obeys the Schrödinger equation

h̄2

2m
∇2ψ +(E−U (x))ψ = 0. (3)

Its energy levels E [U (x)] are functionals of the potential
U (x). The only characteristic of the random potential κ
together with the Planck’s constant h̄ and the mass m

establishes the scales of length and energy:

L =
h̄4

m2κ2 , E =
h̄2

mL 2 , (4)

which we call the Larkin length and Larkin energy, re-
spectively in analogy with the scale found in the Larkin’s
work [29] for an elastic medium in a random field. The
density of states ν(E) belonging to (3) in the limit E <
0, |E| À E was calculated in [4, 5, 6] (for a complete
summary see [30]). We reproduce some of their results
and extend them to find the probability distribution of
the levels with energy less than some E (E < 0; |E|À E ),
the distances between such states and the tunneling am-
plitude between them. Further we will work in a rather
rough approximation similar to that used by Larkin and
Ovchinnikov [31] and Imry and Ma [32]. However, we
start with a rigorous statement of the problem which
gives a clue for our further estimates. The most easily
calculable value is the density of state ν (E,Ω) which can
be written as a path integral (see the cited works [4, 5, 6]):

ν (E,Ω) =
1
Ω

∫
δ (E−E [U (x)])dW [U (x) ,Ω] , (5)

where E [U (x)] is the spectrum of eigenvalues of the
Schrödinger equation (3) in the volume Ω.

In a large 3d volume the states with energy E À E
are delocalized, whereas the states with negative energy
sufficiently large by modulus (E < 0 and |E| À E ) are
strongly localized. The threshold of localization is a posi-
tive energy of the order of E [33]. In the interval between
E and −E the transition from the extended to strongly
localized states proceeds. The latter are supported by
rare fluctuations of the random potential, which form a
potential well sufficiently deep to have the negative en-
ergy E as its only bound state. As it is clearly seen from
equations (2,5), the main exponential factor in the den-
sity of state can be found by minimization of the integral∫

Ω U2 (x)dΩ at a fixed value of the energy level E [U (x)],
which is a functional of the random potential U (x). The
latter can be determined as a minimum of the energy over
the wave function:

E [U (x)]= min
ψ(x)

E [U (x) ,ψ (x)]= min
ψ(x)

∫ [
}2

2m
|∇ψ (x)|2 +U (x) |ψ (x)|2

]
dΩ

(6)
Thus, we need to minimize a functional:

F [U (x) ,ψ (x)]=
1
2

∫
U2 (x)dΩ−λ

∫ [
}2

2m
|∇ψ (x)|2 +U (x) |ψ (x)|2

]
dΩ

(7)
over ψ (x) and U (x). Here λ is a Lagrangian factor. The
minimization over ψ (x) leads to Schrödinger equation
(3), whereas the minimization over U (x) results in a
relation between U (x) and ψ (x):

U (x) = λ |ψ (x)|2 (8)



Thus, equation (3) turns into the Ginzburg-Landau equa-
tion. For our purpose the most important consequence of
the relationship (8) is that the fluctuation potential well
U (x) has the same characteristic linear size R as the wave
function ψ (x). It is clear that the maximum probability
requires the bound state with the fixed energy E to be the
only bound state in the potential well. Otherwise, at the
same energy, we need a deeper well, i.e. larger U2 (x).
For the same reason the fluctuation well must have the
spherical shape. Let the radius of the well is R. Then
the depth of the well can be estimated as Umin ∼ − }2

mR2

and the energy level in it differs by a factor about 1/2:
E ∼− }2

2mR2 . The exponential factor in the density of state
reads:

exp

(
−

4π
3 R3U2

2κ2

)
= exp

(
−L

R

)
= exp

[
−

( |E|
E

)1/2
]

,

(9)
The result (9) is valid provided the number in the expo-
nent is large, i.e. R¿L and |E| À E . Let us introduce
the spatial density nw(E) with the energy less than E. It
is related to the DOS by equation nw(E) =

∫ E
−∞ ν(E)dE.

For deep levels it can be also considered as the spatial
density of states nw(R) with the radius less than R, where
R = h̄/

√
2m|E|. For such states nw(R) is proportional

to a small exponent exp(−
√
| E |/E ) = exp(−L /R).

From the dimensionality consideration it follows:

nw(E) = R−3 f
(

L

R

)
exp

(
−L

R

)
. (10)

The function f (x) can be found from Ref.[34] to be pro-
portional to f (x) ∼ xα with α = 1. It will be inessen-
tial for further calculation. The average distance d(R) be-
tween the wells of the radius less than R reads:

d(R) = n−1/3
w = R f−1/3 exp

(
L

3R

)
. (11)

Thus, the distances between the wells are significantly
larger than their sizes. The tunneling factor t (R) between
two typical wells with the radius R of the same order of
magnitude is given by a semiclassical expression t (R) =
exp

(− 1
h̄

∫ |p| dl
)
, where the path of integration connects

the two wells. By the order of magnitude p ∼ h̄/R and
the length of the integration path is ∼ d (R). Therefore,
1
h̄

∫ |p| dl ≈ d/R≈ f−1/3 exp
(

L
3R

)
and

t (R) = exp
[
− f−1/3 exp

(
L

3R

)]
. (12)

At R ∼ L /3 or E ∼ −9E , the distances between the
optimal potential wells become of the same order of
magnitude as their size R. Simultaneously the tunneling
amplitude between the wells becomes of the order of

1. The potential wells percolate and tunneling is not
small, but the states still are not propagating due to the
Anderson localization [1].

BOSE GAS IN A LARGE BOX WITH AN
UNCORRELATED RANDOM

POTENTIAL

In the ground state of an ideal Bose gas in a large box
with the Gaussian random potential all particles are lo-
cated at the deepest fluctuation level. In the box of cubic
shape with the side L the deepest level which occurs with
probability of the order of 1 has the radius R determined
by equation: L3nw (R) = 1, i.e. R∼ L

3ln(L/L ) . The prefac-
tor f introduces a negligible correction to the denomina-
tor of the order of ln

(
ln L

L

)
. The corresponding energy

is E ∼ −9E
(
ln L

L

)2. As we already mentioned such a
state is non-ergodic since the location and the depth of
the deepest level strongly depends on a specific realiza-
tion of the disordered potential. Therefore, the average
energy per particle and other properties averaged over the
ensemble has nothing in common with the properties of a
specific sample. Even an infinitely small repulsion makes
the system ergodic in the thermodynamic limit, i.e. when
first the size of the system grows to infinity and then the
interaction goes to zero. In a sufficiently large volume
any physical value per particle coincides with its average
over the ensemble. The reason of such a sharp change is
that, at any small but finite interaction, the energy of par-
ticles repulsion overcomes their attraction to the potential
well when the number of particles increases. They will be
redistributed over multiple wells. Since the distribution
of wells in different parts of sufficiently large volume
passes all possible random configurations with proper
ensemble probabilities, the ergodicity is established. Be-
low we find how the interacting particles eventually fill
localized states. In a real experiment the Bose gas may be
quenched in a metastable state depending on the cooling
rate and other non-thermodynamic factors. This is what
M.P.A. Fisher et al. [35] call the Bose glass. Such a state
is also possible in the case of weakly repulsive Bose gas.
However, as it will be demonstrated later, in the case of
cooled alkali atoms the tunneling amplitude still remains
large enough to ensure the relaxation to the equilibrium
state in 10−3÷10−2s. Our further estimates relate to the
real ground state.

As in the Bogoliubov’s theory [36] and its exten-
sion by Belyaev [37], we assume that the gas criterion
na3 ¿ 1 is satisfied. Here n = N/Ω is the average parti-
cle density; N is their total number and a is the scattering
length. Implicitly our considerations takes in account the
change of the optimal potential well due to the interac-
tion.



Let the Bose gas with the average density of particles
n fill all potential wells with the radii less than R in the
ground state. The average number of particles per well is

Nw (R) = n/nw (R). (13)

The local density inside the well of the linear size R is

np(R) =
3Nw (R)

4πR3 . (14)

The gain of energy per particle due to random potential
is E (R) =− h̄2

2mR2 ; the repulsion energy due to interaction

is equal to gnp (R) = 3h̄2Nw(R)a
mR3 , where we used the well-

known relation for an effective potential field induced by
a gas of scatterers [38]. Minimizing the total energy per
particle Etot (R) =− h̄2

2mR2 + 3h̄2Nw(R)a
mR3 over R we find the

value of R corresponding to the minimum of energy at
fixed n with the logarithmic precision:

R(n) =
L

ln(nc/n)
. (15)

where the critical density nc is defined as follows:

nc =
(
3L 2a

)−1
(16)

The factor f in equation (10) leads to corrections of the
type ln(ln(nc/n)) which can be neglected. Further we put
f = 1. The average distance between the closest filled
wells according to the corresponding expression d(R) for
single-particle states reads

d (n) = L (ln(nc/n))−1 (nc/n)1/3 . (17)

It strongly exceeds the average size of the potential well
(15) at n ¿ nc. At the same condition the chemical
potential of atoms can be estimated as

µ (n) =− h̄2

2mR2 (n)
=−E

2

(
ln

nc

n

)2
. (18)

The tunneling amplitude t (n) between two wells sepa-
rated by a typical distance d (n) can be found by employ-
ing the single particle result (12):

t (n) = exp
[
−(nc/n)1/3

]
. (19)

Thus, the Bose gas at n¿ nc is fragmented into multiple
clusters of small size R(n) separated by much larger
distances d (n) and containing about L /

[
3a

(
ln nc

n

)3
]

particles each. The amplitude of tunneling between the
wells depends on the scattering length in a non-analytic
way and is exponentially small for weak interaction.
Therefore, the number of particles in each cluster is
well defined. As a consequence, the phase is completely
uncertain. Such a state is a singlet with non-uniformly
distributed particles, a random singlet: the ground state
is non-degenerate. The compressibility ∂n

∂ µ = n
E ln nc

n is
finite as expected for the Bose glass phase [35].

BOSONS IN ATOMIC TRAPS

Our results can be easily extended to bosons in a har-
monic traps characterized by a potential

Vtrap =
mω2R2

2
=

h̄2

2m
R2

`4 (20)

where we introduced the oscillator length ` =
√

h̄/(mω).
The energy of the bosons includes now four terms: the
kinetic energy, the confining potential energy of the trap,
the repulsion from other particles and the energy of the
random potential. Two of them, the interaction with the
trap and the random potential tend to confine and localize
the particle. The minimization of energy leads to four
different regimes (see Figure 1).
1. Weak disorder and weak interaction: 3Na¿ `¿L .

In this case the interaction can be neglected. Minimiz-
ing the remaining terms, the kinetic energy and energy
of the trap, we find R = `. Physically it means that all
particles are condensed in the oscillator ground state.
2. Weak disorder and strong interaction: ` ¿ L , ` ¿
3Na .

Neglecting the kinetic energy and minimizing remain-
ing energy of traps plus the repulsion energy, one finds
the result known as Thomas-Fermi approximation[13]:
R =

( 9
2 Na`4

)1/5
.

3. Strong disorder and weak interaction : 3Na¿L ¿ `
.

In this range of variables the non-ergodic phase is re-
alized. Since interaction is negligible, the particles find a
random potential well with the deepest level and fall into
it. Let such a well can be found at a distance ∼ L from
the trap center. Its depth typically is about 9E ln2 (L/L ).
This gain of energy must be not less than the loss of
the trap energy mω2L2/2. A typical value of L appears
when both this energies have the same order of magni-
tude. Thus, L≈ 6

√
2
(
`2/L

)
ln(`/L ). A typical size of

the well is R≈L /(6ln(`/L )).
4. Strong disorder and moderate interaction: L ¿
3Na¿ `.

In this case the ergodicity is restored. Our experience
with the gas in a box prompts that the gas cloud is split
into fragments each occupying a random potential well
from very small size till same size R depending on N. The
typical disorder energy per particle is µ = −E

(
ln nc

n

)2.
It becomes equal to the trap energy at the distance L ∼(
`2/L

)
lnΓ where Γ is a new dimensionless parameter

Γ =
`6

3NaL 5 . (21)

It is equal to the ratio nc/n, where n∼ N/L3 ∼ NL 3/`6

is the average density. The state of the Bose gas is frag-
mented and strongly localized when Γ is large; the tran-
sition to delocalized superfluid state proceeds when this



Figure 1. Regime diagram of atoms in traps: uncorrelated disorder. R denotes the size of the single existing atomic cloud. L is the
size of the cloud of fragments.

ratio becomes ∼1. The phase diagram is shown in Fig.
1. Note the counter-intuitive dependence of the size on
the number of particles: the cloud slightly contracts with
increasing number of particles. It happens because the
number of particles in each fragment increases more
rapidly with the average density than the number of frag-
ments.

CORRELATED DISORDER

So far we considered uncorrelated disorder (1). Our re-
sults can be extended to Gaussian random potentials
with a finite correlation length b. The random potential
is characterized by the correlation function K (x,x′) =
〈U (x)U (x′)〉 which has a form:

K
(
x,x′

)
=

〈
U2〉h

( |x−x′|
b

)
, (22)

where
〈
U2

〉 ≡ 〈
U2 (x)

〉
is the average quadratic fluctu-

ation of the random field at a point. The shape function
h(u) is normalized by the condition h(0) = 1. As long as
b ¿≤L = 3h̄4

4πm2U2
0 b3 the results of the previous consid-

erations remain correct. In the opposite case the optimal
potential well containing a deep level with negative en-
ergy E (| E |ÀU0 =

√
〈U2〉) has the width b its shape

coincides with that of the correlation function:

U(x) = Eh
(x

b

)
. (23)

Contrary to the uncorrelated case, it contains many
bound states. The density of single-particle states is de-

termined by minimization of the exponent in the Gaus-
sian distribution

− lnW [U(x)] =
1
2

∫
U(x)K−1 (

x,x′
)

U(x′)dxdx′ (24)

over U(x) at a fixed energy level in the fluctuation po-
tential well E [U (x)] = E. Here K−1 (x,x′) is the inverse
correlator whose convolution with the correlator K (x,x′)
is equal to δ (x,x′). Substituting in eq. (24) U(x) from
eq. (23), we arrive at the Gaussian density of state and
probability to find a deeply localized level with energy
E:

q(E) = exp
(
−E2

2
U2

0

)
(25)

This Gaussian-like distribution over the energy was
first found in the works [39, 40]; independently but
later it was rediscovered in [41, 42]; several other
works clarified and added some details to the theory
[43, 44, 45] Again we briefly reproduce and extend
their ideas to apply them for our problem. It is conve-
nient to introduce a new length scale B = b(L /b)1/4 =
(3/4π)1/4 (

h̄2/mU0
)1/2

. In the following we restrict our
consideration to the case bÀL , i.e. bÀB. Some results
for uncorrelated disorder can be reproduced in the case
of the strongly correlated disorder simply by substitution
the Larkin length L by B. For example, the critical den-
sity is nc ∼ 1/(aB2). The deep potential wells are filled
up to the depth ∼ U0

√
2ln nc

n ; each well is filled only
near the bottom, so that the size of a separate cloud (frag-
ment) is R ≈ b(ln(nc/n))−1/2. The number of the parti-
cles in each fragment is N ≈ 4

3 πR3nc ∼ b3

B2a

(
ln nc

n

)3/2.
The distance between fragments is d(n)≈ b(nc/n)1/3.



In the case of a harmonic trap we again find four differ-
ent regimes (Fig. 2): weak disorder and weak interaction;
Thomas-Fermi regime; strong disorder and weak inter-
action (non-ergodic regime with one or few fragment);
strong disorder and intermediate interaction (deeply lo-
calized fragmented state). The relevant parameter is Γ′ =
`6/(NaB5)≈ nc/n. For Γ′ ≈ 1 the transition from deeply
localized to superfluid phase proceeds.

LOWER DIMENSIONS

In the experiments with cooled gases the trap is mostly
realized as a rotation ellipsoid with a large aspect ratio. In
the experimental setup with He on Vycor experimenters
used thin helium film, which displayed the crossover
from 2d to 3d behavior. Therefore it is reasonable to
extend our theory for lower dimensions d = 1,2. Below
we show the results without derivation, which can be
found in our article [46].

The uncorrelated disorder is characterized by one only
characteristic length, the Larkin length

Ld =
(
}4

m2κ2

) 1
4−d

. (26)

The characteristic energy scale is E = h̄2/(2mL 2). The
extension of the exponential law (9) for the probability
to find the deep potential well of the size not larger than
R is:

q(R) = f exp

[
−

(
Ld

R

)4−d
]

= f exp

[
−

( |E|
Ed

) 4−d
2

]
,

(27)
As earlier f is a power-like function of the ratio L /R at
L /RÀ 1: f (x) ∝ xα with α = 1 for d = 2,3 and α = 0
for d = 1. The average distance between the wells of the
radius less than R is

d (R) = R f−1/d exp

[
1
d

(
Ld

R

)4−d
]

(28)

The tunneling amplitude between nearest wells has a
characteristic value

t (R) = exp

[
− f−1/d exp

[
1
d

(
Ld

R

)4−d
]]

(29)

The repulsion energy per particle is as before gdnp (R),
but the connection between the coupling constant g and
the scattering amplitude a depends on dimensionality of
the space:

gd =
4π}2ad−2

d
m

(30)

At d = 2 this equation is invalid, but the coupling
constant g is well defined and has dimensionality
energy×length2. The maximal radius of the filled well
as a function of density is

R(n) =
Ld(

ln nc
n

) 1
4−d

, (31)

where the critical density is defined as follows:

nc ∼ Ed

gd(4−d)
∼ 1

4πL 2
d ad−2

d (4−d)
(32)

In 1-d Bose-gas the critical density increases with the
repulsion strength in contrast to 2- and 3-dimensional
cases. The reason is that the 1-d Bose-gas with strong re-
pulsion (hard core) is equivalent to the Fermi-gas whose
kinetic energy increases with the size of the core. The
chemical potential in the fragmented state reads µ (n) =

−Ed
(
ln nc

n

) 2
4−d . The tunneling amplitude between frag-

ments is t (n) = exp
[
−(

f nc
n

)1/d
]
. We do not show the

results for strongly correlated potential in d dimensions.
They can be found in the same article [46].

Considering the gas in a trap which has a shape of
a disc or a cigar, one should express the parameters of
effective d−dimensional problem in terms of the initial
gas density n, 3d-scattering length a, Larkin length L ,
the transverse oscillator length `⊥ and the longitudinal
oscillator length `. The corresponding "translation rules"
with precision of numerical factors are as follows:

• Larkin length: Ld ≈
(
L `3−d

⊥
) 1

4−d

• Coupling constant: gd = g`d−3
⊥

Ω3−d

• Scattering length: ad ∼
(
a `d−3

⊥
) 1

d−2 . This relation
is invalid at d = 2, but the previous relation remains
correct.

• Density: nd = n`3−d
⊥

CONCLUSIONS

Four parameters can be controllably and independently
varied in the experiment with cooled gases. They are:
number of particles N; the frequency ω or equivalently
the strength of the trap; the scattering length a (it can be
varied by approaching one of the Feshbach resonances);
the strength of disorder U0. Using this freedom it is
feasible to pass all regimes described above. A simple
estimate shows that, at b ∼ 1µm, the transition from
uncorrelated to strongly correlated regime proceeds at
frequency of disorder potential ωd =

√
2U0/mb2∼ 1kHz

which is accessible.



Figure 2. Regime diagram of atoms in traps: correlated disorder. R denotes the size of the single atomic cloud, L denotes the size
of the fragmented state.

Simplest experiments are the measurements of the
cloud size L as a function of different variable parameters
in the regime of multiple localized fragments. Theory
predicts that for uncorrelated disorder the size of the
cloud is proportional to U2

0 /ω . It also predicts very weak
dependence of the size on the number of particles∼ lnN.
In the case of strongly correlated disorder the size of the
cloud is proportional to ωU1/2

0 ; the dependence on N also
is weaker than in the uncorrelated regime: L ∝ (lnN)1/4.

It would be important to observe the transition from
non-ergodic state with one or few fragments to the er-
godic state with many fragments and check that it hap-
pens at N = L /3a for uncorrelated disorder and at N =(
b3/3aB2

)
for strongly correlated disorder.

Another feasible experiment is the time-of-flight spec-
troscopy after switching off both the trap and the random
potential. In this experiment the distribution of particles
over momenta (velocities) is measured. Its width ∆p is
associated with the average size of the fragment R by the
uncertainty relation ∆p = h̄/R. It gives the opportunity to
check the equation R = L / lnΓ for the uncorrelated dis-
order or R = L / lnΓ′ for correlated disorder. Installing a
counter close to the trap, at a distance comparable to the
size of the trap, would allow to register the oscillations
of the particle flux due to discrete character of the frag-
mented state. This is an opportunity to find the distances
between fragments and compare theory with experiment.

The transition between localized and delocalized co-
herent state in the random potential was found in sev-
eral experiments (see Introduction). We propose to make
more detailed measurement of the transition manifold
and check our predictions.

An important question is whether the relaxation to the

ground state can be reached during a reasonable time in-
terval compatible with the time of experiment. We an-
alyze this question for the uncorrelated or weakly cor-
related disorder. In this case the relaxation time due to
tunneling can be estimated as τ = 2πω−1

n t−1, where
ωn ∼ E

h̄ (lnΓ)2 is the characteristic frequency of the op-
timal potential well and t ∼ exp

[−Γ1/3
]

is the tunneling
coefficient (see eq. (19)). For numerical estimates we ac-
cept Γ ∼ 125, ` ∼ 10µm, b ∼ L ∼ 1µm, a ∼ 0.01µm,
N ' 27,000. Then t−1 = 148 and τ ∼ 0.06s. The Larkin
length can be increased by decreasing the amplitude of
the random potential. Simultaneously, at fixed values N,
` and a, the value Γ decreases as L −5. This example
shows that the equilibrium is accessible, though it is dif-
ficult to reach large ratio L /b.

In conclusion, we presented a simple physical picture
of deeply localized states of the Bose gas in a random
potential. We demonstrated that the particles eventually
fill the deep potential wells formed by fluctuations of
the random potential and by their self-consistent field.
Based on this idea the geometrical and physical proper-
ties of these states are described. It occurs that the ground
state of the system can be either almost homogeneous
and coherent (superfluid) if the disorder is weak enough,
or fragmented and strongly localized. In particular, if the
disorder is much stronger than the repulsion between par-
ticles, the system is in the non-ergodic state, which prop-
erties even in the equilibrium strongly depend on the spe-
cific sample. At growing number of particles the system
occurs in an ergodic, but strongly localized ground state
consisting of multiple particle clusters populating deep
fluctuation wells. At the further increase of the number of
particles the tunneling between different potential wells



increases leading to the phase correlation and finally to
the quantum phase transition to the coherent (superfluid)
state.

Quite recently there appeared a work by A.
Babichenko and V. Babichenko [47] in which the
authors have formulated the problem of deeply localized
state of weakly interacting Bose gas employing the
Keldysh-Schwinger technique. For the uncorrelated
Gaussian disorder they have found the instanton solution
corresponding to the deeply localized state at a fixed
chemical potential and the expression for the chemical
potential vs. given average density n, which coincides
with our Eq. (18). Thus, they confirmed our theory by
exact calculation.
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