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Abstract. An exhaustive classification scheme of topological insulators and superconductors is presented. The key property
of topological insulators (superconductors) is the appearance of gapless degrees of freedom at the interface/boundary
between a topologically trivial and a topologically non-trivial state. Our approach consists in reducing the problem of
classifying topological insulators (superconductors) in d spatial dimensions to the problem of Anderson localization at
a (d − 1) dimensional boundary of the system. We find that in each spatial dimension there are precisely five distinct
classes of topological insulators (superconductors). The different topological sectors within a given topological insulator
(superconductor) can be labeled by an integer winding number or a Z2 quantity. One of the five topological insulators is the
“quantum spin Hall” (or: Z2 topological) insulator in d = 2, and its generalization in d = 3 dimensions. For each dimension
d, the five topological insulators correspond to a certain subset of five of the ten generic symmetry classes of Hamiltonians
introduced more than a decade ago by Altland and Zirnbauer in the context of disordered systems (which generalizes the three
well known “Wigner and Dyson” symmetry classes).
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A. INTRODUCTION

We will give a review of the (exhaustive) classification
scheme of topological insulators (or: superconductors)1

presented in Ref. [1]. We can think of topological in-
sulators (superconductors) as being gapped states (thus
“insulators”) in d spatial dimensions (we consider here
d = 1,2,3) with the following property: if we termi-
nate the topological insulator (superconductor) against
a “topologically trivial” state, such as e.g. simply vac-
uum, gapless degrees of freedom will necessarily appear
at the interface (“boundary”) between the topologically
trivial and the topologically non-trivial states – see Fig. 1.
(We will present some simple, and well known examples
shortly.) Moreover, the so-appearing gapless boundary
degrees of freedom are completely robust to perturba-
tions. For example, we may subject the topological in-
sulator (superconductor) to arbitrary random potentials
or perturbations no matter how strong, without destroy-
ing the “gaplessness” of the boundary degrees of free-
dom, as long as these perturbations do not close the bulk
gap and preserve the generic symmetries of the system

1 In this work we consider topological insulators (superconductors)
without interactions. Since these are gapped states in the d-dimensional
bulk, such states will be stable to sufficiently weak interactions. How-
ever, under what conditions certain different topological states are adia-
batically connected when interactions are included is, to a large extent,
an open problem to-date.
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FIGURE 1. Interface between a topological, and a topologi-
cally trivial insulator.

(what is meant by these symmetries will be made precise
below, and is indeed of fundamental importance in our
work). Clearly, these gapless modes must be of a very
special kind, since typically, gapless degrees of freedom
tend to become localized in the presence of random po-
tentials, certainly if the latter are sufficiently strong (this
is the phenomenon of “Anderson localization” for non-
interacting systems).

In short, the approach used in this work to clas-
sify topological insulators (superconductors) in d spa-
tial dimensions consists in classifying gapless systems
of fermions (corresponding to the boundary degrees of
freedom) which cannot be localized by disorder. Thus,
we reduce the problem of classifying topological insula-



or σxy =

e
2

h

IQHE

σxy =

e
2

h

IQHE

FIGURE 2. Chiral edge states of the integer quantum Hall
insulators.

tors (superconductors) in d spatial dimensions to a prob-
lem of Anderson localization in (d− 1) dimensions. In
this work we solve this problem of Anderson localiza-
tion, and thereby the classification problem for topologi-
cal insulators (superconductors).

Topological insulators (superconductors) are in-
herently “holographic” states: the nature of the d-
dimensional gapped topological bulk state can be read
off from the (holographic) “image” or “shadow” of these
topological properties on the system’s boundaries. In-
deed, there is a one-to-one correspondence between the
topological properties of the gapped bulk and properties
of the gapless surface degrees of freedom. These notions
are of course familiar from the quantum Hall effect,2 and
it will be useful to remind the reader of (simple) well
known examples of such quantum states.

Well known examples of topological insulators (super-
conductors):

(i): The probably best known example of a topologi-
cal insulator is the integer quantum Hall insulator (i.e., a
filled Landau level). In this non-interacting d = 2 elec-
tron system time-reversal symmetry (TRS) is broken
due to the applied magnetic field. If we terminate the
quantum Hall insulator by a one-dimensional boundary
against “vacuum”, a gapless edge state is known to ap-
pear (see Fig. 2). This edge state possesses a chirality
inherited from the applied magnetic field (broken TRS),
and propagates only in one direction; therefore it cannot
be localized by disorder.

(ii): Another example in d = 2 is the chiral px + ipy
superconductor (see e.g. [2]). This is a gapped super-
conductor, which also breaks TRS. The non-interacting
system in question is the system of quasi-particle excita-
tions deep inside the superconducting state, as described
by the Bogoliubov-de Gennes (BdG) equation. This is
an example of a topological superconductor, as can be
seen by terminating the chiral px + ipy state against vac-
uum (or an otherwise structureless “standard” supercon-

2 See e.g. [3, 4, 5]; see also [6] for a different context.

ducting state): again, at the interface (boundary) a chi-
ral edge mode is known to occur, which, since it propa-
gates only in one direction cannot be localized by disor-
der [just as that of example (i)]. However, since charge
is not a conserved quantity in a superconductor, this
chiral edge mode only transports heat (energy) and not
charge. This makes clear that while also being a topolog-
ical gapped state in d = 2, the chiral px + ipy supercon-
ductor possesses different “symmetries” than the d = 2
integer quantum Hall state in example (i). (This notion
of “symmetries” will be made precise below.)

(iii): Another topological insulating state, often re-
ferred to as the Z2-topological insulator [7, 8], or the
“quantum spin Hall” (QSH) state, has recently attracted
much attention. This state is known to exist in d = 2
and in d = 3 dimensions and, as opposed to the previous
two examples, does not break TRS. It is known to occur
in certain band insulators with strong spin-orbit interac-
tions. Let us first discuss the d = 2 case, realized exper-
imentally e.g. in HgTe/(Hg,Ce)Te semiconductor quan-
tum wells [9]. Because TRS is not broken, it is not as ob-
vious as in examples (i) and (ii) why the gapless bound-
ary degrees of freedom appearing at the interface ter-
minating the d = 2 Z2-topological insulator against vac-
uum cannot be localized by disorder. However, this edge
state consists of a single Kramers doublet corresponding
to a single pair of modes propagating in opposite direc-
tions (see Fig. 3), which cannot be mixed by any TRS
impurity potential.3 The Z2-topological insulator [7], or
the QSH state, is also known to exist in d = 3 dimen-
sions [10, 11, 12]. It is realized in Bismuth-Antimony
alloys, as demonstrated in recent experiments [13, 14].

In this work, we ask ourselves the question: which d-
dimensional (non-interacting) fermion systems possess
gapped ground states with topologically non-trivial prop-
erties, i.e., which systems are “topological insulators (su-
perconductors)”, as described above? How many “differ-
ent” such systems are there? Are there infinitely many,
or only a finite number of them? How do these proper-
ties depend on the spatial dimensionality d? Is there any
systematics underlying these different systems?

The answer to these questions turns out to be both deep
and interesting: in every spatial dimension d = 1,2,3
there exist precisely five different classes of topological

3 Indeed, a one-dimensional extended (not localizing) state had already
been observed [15] in studies of (quasi 1D) Anderson localization
problems with spin-orbit scattering in 1992, but this observation was
not understood until recently: truly quasi one-dimensional systems with
spin-orbit scattering must always possess two of Kramers doublets
which indeed are not protected from localization by disorder; however,
when the one-dimensional system is the boundary of what is known
today as a two-dimensional Z2-topological insulator, a pair of edge
states which form a single Kramers doublet appears on each boundary,
and such a pair evades Anderson localization.
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FIGURE 3. Chiral edge states of the Z2 topological insulator
(“quantum spin Hall effect”) in d = 2 dimensions.

insulators (superconductors). In d = 3 dimensions, for
example, there exist besides the Z2-topological insulator
discussed in example (iii) above, four more, and all five
topologically non-trivial states possess TRS (in d = 3).
Our results are summarized in Table 2. In order to ex-
plain Table 2, we first need to explain the very general
symmetry classification of quantum mechanical Hamil-
tonians, and explain why this is a fundamental concept
underlying the classification scheme of topological insu-
lators (superconductors). This will be done in the follow-
ing section, Section B. In section C we will explain with
a few very simple examples how topology can arise in
simple systems such a band insulators. In section D we
will describe the classification of topological insulators
(superconductors) in d = 3 spatial dimensions. Sections
E and F will provide a summary of the same classifica-
tion in d = 2 and d = 1 dimensions. Section G provides
a discussion and concluding remarks.

Our work [1] demonstrates an unexpected relationship
between two apparently rather unrelated subjects. One is
the symmetry classification of general quantum mechan-
ical Hamiltonians (“The 10-fold Way” to be reviewed in
Section B below), which is at the root of theories of dis-
ordered systems, be it Anderson localization, or random
matrix theory.4 The other is the classification of topolog-
ical insulators. It is rather surprising, initially, that a rela-
tionship exists between these two subjects. Moreover, a
relationship with a third subject has recently emerged.
Recent work by A. Kitaev reached [16], by using K-
theory, the same conclusions as those obtained in [1] for
the classification of topological insulators. Thus there are
remarkable connections between the seemingly rather
disjoint subjects of (i) topological insulators, (ii) An-
derson localization, random systems, and random matrix
theory, as well as (iii) K-theory.

4 This classification appeared in the work of Zirnbauer [17], and Al-
tland and Zirnbauer [18, 19], more than a decade ago. It extends the
well familiar “Wigner Dyson” classification of Hamiltonians (“unitary,
orthogonal, symplectic” classes).

B. SYMMETRY CLASSIFICATION OF
HAMILTONIANS – “THE 10-FOLD WAY”

Consider the gapped Hamiltonian and the correspond-
ing ground state of a d-dimensional topological insula-
tor.5 Because of the presence of the gap, we may de-
form the Hamiltonian slightly, by adding various per-
turbations to it (which preserve the generic symmetries
such as, e.g., time reversal symmetry), while still pre-
serving the gap. In this way, we map out an entire gapped
phase. We may then ask the question: how many dif-
ferent such phases can a system possess, so that in go-
ing from one phase to another, a quantum phase transi-
tion has to be crossed? Now, clearly, because of the bulk
gap, we will also remain in the same phase by perturb-
ing our Hamiltonian by perturbations which break trans-
lational invariance (certainly, as long as these perturba-
tions are small enough). The most general such perturba-
tion is what we call a random perturbation. The perturbed
Hamiltonian is thus a random (=lacking translational in-
variance) gapped Hamiltonian. If the original (unper-
turbed) phase was topological (in the sense described
above), then the random Hamiltonian will be in the same
(topological) phase. Therefore we see that in attempt-
ing to classify topological phases, we need to consider
in general random gapped Hamiltonians. Thus a given
gapped topological phase is associated with a certain
class of gapped random Hamiltonians. Hence we are led
to study the classification of random gapped Hamiltoni-
ans. How many such Hamiltonians are there? Clearly, in
attempting to classify random Hamiltonians, we can only
use the “most generic quantum mechanical symmetries”,
translational invariance not being one of them. The sym-
metry properties that every quantum mechanical Hamil-
tonian can be classified by are time-reversal symmetry
(TRS) and charge-conjugation (or: “particle-hole”) sym-
metry (PHS). Investigating the properties of a general
Hamiltonian under such symmetries yields the now fa-
mous ten symmetry classes (the “ten-fold way”), origi-
nally described in the seminal work of Zirnbauer [17],
and Altland and Zirnbauer [18, 19], more than a decade
ago. This classification extends and completes the famil-
iar “three-fold way” classification scheme of Wigner and
Dyson [20], going back to the origins of random ma-
trix theory and the study of complex nuclei. The rea-
son why there are only ten possible symmetry classes
of quantum mechanical Hamiltonians is easy to under-
stand by considering TRS and PHS. Let us begin with
the time-reversal operator T which is an anti-unitary op-
erator. Thus T is the product of a unitary operator UT and

5 Consider the BdG Hamiltonian in the case of the topological super-
conductor.



TABLE 1. Ten symmetry classes of single particle Hamiltonians classified in terms of the presence or absence of time-
reversal symmetry (TRS) and particle-hole symmetry (PHS), as well as sublattice (or “chiral”) symmetry (SLS) [17, 18, 19].
In the table, the absence of symmetries is denoted by “0”. The presence of these symmetries is denoted either by “+1” or
“−1”, depending on whether the (anti-unitary) operator implementing the symmetry squares to “+1”or “−1”. For the first
six entries of the table (which can be realized in non-superconducting systems) TRS = +1 when the SU(2) spin is integer and
TRS =−1 when it is a half-integer. For the last four entries, the superconductor “Bogoliubov-de Gennes” (BdG) symmetry
classes (denoted by the symbols D, C, DIII, and CI in “Cartan nomenclature”), it turns out that the Hamiltonian preserves
SU(2) spin-1/2 rotation symmetry when PHS=−1 whilst it does not preserve SU(2) when PHS=+1. The column entitled
“Hamiltonian” lists the spaces to which the quantum mechanical time-evolution operators of each symmetry class belong
(see section B). The column entitled “NLSM (ferm. replicas)” lists the “target spaces” of Non-Linear Sigma Model field
theories describing Anderson localization physics in each symmetry class (see section B).

System Cartan nomenclature TRS PHS SLS Hamiltonian NLSM (ferm. replicas)

standard A (unitary) 0 0 0 U(N) U(2n)/U(n)×U(n)
(Wigner-Dyson) AI (orthogonal) +1 0 0 U(N)/O(N) Sp(2n)/Sp(n)×Sp(n)

AII (symplectic) −1 0 0 U(2N)/Sp(2N) O(2n)/O(n)×O(n)

chiral AIII (chiral unit.) 0 0 1 U(N+M)/U(N)×U(M) U(n)
(sublattice) BDI (chiral orthog.) +1 +1 1 SO(N+M)/SO(N)×SO(M) U(2n)/Sp(n)

CII (chiral sympl.) −1 −1 1 Sp(2N+2M)/Sp(2N)×Sp(2M) U(2n)/O(2n)

BdG D 0 +1 0 SO(2N) O(2n)/U(n)
C 0 −1 0 Sp(2N) Sp(n)/U(n)

DIII −1 +1 1 SO(2N)/U(N) O(2n)
CI +1 −1 1 Sp(2N)/U(N) Sp(n)

the “complex conjugation operator” K, i.e., T = KUT .
On the first quantized Hamiltonian H time reversal acts
as H → U†

T H ∗UT . Now, any Hamiltonian can behave
in three possible ways under TRS: (i): it is not invari-
ant under TRS, which case we denote by TRS= 0, or,
(ii): it is invariant under TRS and the (anti-unitary) time
reversal operator T squares to +1, which case we de-
note by TRS= +1, or, (iii) it is invariant under TRS and
the (anti-unitary) time reversal operator T squares to−1,
which case we denote by TRS=−1. Similarly, it is pos-
sible to describe the particle-hole (charge-conjugation)
symmetry (PHS) operator as an anti-unitary operator C,
when acting on a non-interacting system (see Ref. [1]
for details). Therefore, analogously, the possible behav-
iors of any (non-interacting) Hamiltonian under PHS is
PHS= 0,+1,−1 (meaning that PHS is not a symmetry,
or is a symmetry and the anti-unitary operator C squares
to +1 or−1, respectively). It is now easy to see that there
are precisely ten symmetry classes (i.e., those found by
Zirnbauer and Altland [17, 18, 19]): There are 3×3 = 9
different choices for the behavior of any Hamiltonian un-
der TRS and PHS. A moment’s thought shows that for 8
of these 9 choices the behavior of the Hamiltonian under
the product6 SLS := T ∗C of TRS and PHS, which is a

6 The so-defined symmetry operation is sometimes called “sublattice
symmetry” (or also: “chiral symmetry”), hence the notation SLS, be-
cause a particular (and popular) example of this symmetry arises in sys-
tems described by a hopping Hamiltonian on a bipartite lattice, where
only matrix elements for hopping between the two different sublattices

unitary operator, is uniquely fixed. (We write SLS= 0 if
the operation SLS is not a symmetry of the Hamiltonian,
and SLS= 1 if it is.) The only case when the behavior
under the combined transformation SLS is not uniquely
determined by the behavior under TRS and PHS is when
TRS= 0 and simultaneously PHS= 0. In this case ei-
ther SLS= 1 or SLS= 0 is possible. This reasoning gives
hence (3×3−1)+2 = 10 possible behaviors of a Hamil-
tonian.

These are the ten symmetry classes mentioned above,
which are listed in Table 1. The column “Hamilto-
nian” describes the nature of the time evolution operator
exp{itH }, where H is the first quantized Hamiltonian.
If we consider a discretized version of the system, e.g.
on a (finite) lattice (as e.g. for a hopping Hamiltonian),
then the Hamiltonian H is a finite N ×N matrix.7 In
each symmetry class the time evolution operator is an el-
ement of the particular group or symmetric space, listed
in this column. For example, if the system has no sym-
metries at all, it belongs to symmetry class A. This is
the case for a quantum Hall system, where TRS is bro-
ken.8 In this case, there are no (symmetry) constraints

of the bipartite lattice are non-vanishing. However, this symmetry can
be viewed generally simply as the product of T and C, as stated; we
still denote it by the symbol SLS.
7 N is the product of the number of lattice sites, times the number of
spin orientations (e.g. spin-up and spin-down), if applicable, etc. ...
8 The quantum Hall insulator mentioned in example (i) above belongs
to symmetry class A.



on the Hamiltonian and H is a generic Hermitian ma-
trix. The time-evolution operator is thus a generic unitary
matrix (an element of the group U(N) of unitary matri-
ces, as noted in Table 1), without any further conditions
imposed. The first three rows in Table 1 denote thus the
standard (“Wigner-Dyson”) symmetry classes (“unitary,
orthogonal, symplectic”); these are distinguished only by
the presence or absence of TRS, and possess no other
symmetries. Example (iii) discussed above belongs to
symmetry class AII, in which the only symmetry is TRS,
with the (non-unitary) TRS operator squaring to minus
the identity operator.

The next three rows in Table 1 are identical to the
first three rows, except that all possess an additional SLS
symmetry (SLS= 1), whereas SLS= 0 for the first three
rows. We will defer discussion of these symmetry classes
for now, except that we recall (footnote 6) that examples
of simple realizations of all three (AIII, BDI, CII) can be
obtained from hopping models where particles only hop
between the two sublattices of a bipartite lattice, with the
corresponding TRS properties also imposed.

The last four columns describe the symmetry proper-
ties of the fermionic quasiparticles in superconductors
(or certain superfluids), deep inside the superconducting
state, within a mean field treatment of pairing. Their dy-
namics is described by the BdG Hamiltonian, which is
the Hamiltonian H whose properties are listed in the
column entitled “Hamiltonian”. Any BdG Hamiltonian
possesses by construction a PHS, as indicated in Table 1.
Example (ii) of the d = 2 dimensional p + ip supercon-
ductor (of spinless fermions) belongs to symmetry class
D (7th row): the system possesses no symmetries (in-
cluding TRS) other than the PHS inherent in all BdG
Hamiltonians. Let us conclude by pointing out that sym-
metry class DIII (9th row) describes the superfluid phase
of 3He-B [21], whereas the CI (10th row) describes, e.g.,
singlet superconductors. Topological phases of the latter,
in d = 3 dimensions, were discussed in the recent pa-
per [22].

Let us finally comment briefly on the last column of
Table 1. (An understanding of this column is not required
in order to be able to follow the rest of this review.)
It refers to the conventional long-wavelength descrip-
tion of Anderson localization of non-interacting fermions
subject to disorder potentials, in terms of a Non-Linear
Sigma Model (NLSM) field theory. A NLSM can be
viewed as a generalization of the classical Heisenberg
ferromagnet, described by a model of classical unit vec-
tor spins. These spins can sweep out a sphere, the sim-
plest example of what is called a symmetric space. It is
known since the days of the mathematician E. Cartan,
that there exist only 10 types of symmetric spaces (bar-
ring so-called “exceptional” cases). In general, Ander-
son localization transitions can be formulated in terms of
NLSM field theories of generalized spins, which sweep

k
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gap

FIGURE 4. Schematic band structure of a typical band insu-
lator.

out one of the 10 symmetric spaces (the “target space”),
defining the NLSM. The symmetry class determines
which target space is to be used, and these are listed9

in the last column of Table 1.

C. THE ORIGIN OF TOPOLOGY IN
BAND INSULATORS

In order to illustrate in the simplest terms how topologi-
cal properties arise in topological insulators, let us begin
with a translationally invariant example. A topological
insulator is a very simple system. It is a band insulator of
non-interacting fermions, meaning that there is a gap be-
tween valence and conduction bands, and the fermi level
EF lies in this gap (see Fig. 4). Due to the assumed trans-
lational invariance, the insulator is described in momen-
tum space by a matrix equation for every value of mo-
mentum~k in the Brillouin zone

H (~k)
∣∣∣ua(~k)

〉
= Ea(~k)

∣∣∣ua(~k)
〉

,

where a denotes an index labeling different bands. Let
us now consider, for every momentum ~k in the Bril-
louin zone, the projection operator onto the filled (Bloch)
states,

P(~k) :=
filled

∑
a

∣∣∣ua(~k)
〉 〈

ua(~k)
∣∣∣ . (1)

9 Specifically, we chose here the simplest formulation in terms of a set
of n “fermionic replicas”, where n has to be taken to zero at the end.
In this formulation the symmetric spaces are all compact, when n is
finite. The homotopy group of a symmetric space M tells us if it is
possible to add a topological term (θ term when Πd(M ) = Z and Z2
term when Πd(M ) = Z2) to a NLSM. A technically better controlled,
but equivalent formulation can be provided using a supersymmetric
formulation [23], in which the manifolds listed in the last column are
replaced by supermanifolds [24], containing compact, non-compact,
and fermionic coordinates.



TABLE 2. Summary of the main result of this paper: listed are again the ten symmetry classes
of single particle Hamiltonians (from TABLE 1) classified in terms of the presence or absence
of time-reversal symmetry (TRS) and particle-hole symmetry (PHS), as well as sublattice (or
“chiral”) symmetry (SLS) [17, 18, 19]. The last three columns list all possible topologically
non-trivial quantum ground states as a function of symmetry class and spatial dimension d. The
symbols Z and Z2 indicate that the space of quantum ground states is partitioned into different
topological sectors labeled by an integer (Z), or a Z2 quantity (two sectors only), respectively.

System Cartan nomenclature TRS PHS SLS d = 1 d = 2 d = 3

standard A (unitary) 0 0 0 - Z -
(Wigner-Dyson) AI (orthogonal) +1 0 0 - - -

AII (symplectic) −1 0 0 - Z2 Z2

chiral AIII (chiral unit.) 0 0 1 Z - Z
(sublattice) BDI (chiral orthog.) +1 +1 1 Z - -

CII (chiral sympl.) −1 −1 1 Z - Z2

BdG D 0 +1 0 Z2 Z -
C 0 −1 0 - Z -

DIII −1 +1 1 Z2 Z2 Z
CI +1 −1 1 - - Z

Instead of P(~k) it turns out to be more convenient to use
the operator10

Q(~k) := 1−2 P(~k) , (2)

which has the following properties (as one readily
checks)

Q†(~k) = Q(~k), [Q†(~k)]2 = 1, tr [Q(~k)] = m−n,

where m and n denote the number of filled and empty
bands, respectively. The Hermitian operator Q(~k) plays
the role of the Hamiltonian, carrying only the essential
information about the insulator in question. It has eigen-
values ±1. This “simplified Hamiltonian” is obtained
from H (~k) by assigning, say, to all occupied bands the
energy −1 and to all empty bands the energy +1 (while
all wave functions remain unchanged). Since we are only
interested in the properties of the phase described by the
insulator, we may deform the actual Hamiltonian of the
band insulator until it acquires the simple form Q(~k),
while remaining in the same phase.

In order to see how to use the “Hamiltonian” Q(~k),
let us begin by considering a band insulator in the sim-
plest symmetry class, in which there are no conditions
whatsoever imposed on the Hamiltonian. This is symme-
try class A, where the Hamiltonian H is nothing but a
general Hermitian matrix. In this symmetry class, the set
of n +m eigenvectors (each being an n+ m-dimensional
vector) forms an arbitrary unitary matrix, i.e., an element
of U(n+m). There is however a simple “gauge symme-
try”, because relabeling the empty and the filled states

10 1 denotes the identity operator.

amongst themselves (and forming arbitrary linear com-
binations amongst them) does not change the physics.
Therefore, the Hamiltonian Q(~k) is actually an element
of the so-called “Grassmanian”

Q(~k) ∈U(n+m)/[U(n)×U(m)]. (3)

Since~k runs over the Brillouin zone BZ, the “Hamilto-
nian” of the band insulator is a map form the Brillouin
zone into the Grassmannian,

Q : BZ →U(n+m)/[U(n)×U(m)],

~k → Q(~k). (4)

Let us summarize. The Hamiltonian of a band insulator
can be continuously deformed to the simple form Q(~k)
while remaining in the same phase (i.e., without crossing
a quantum phase transition). Now, the question as to
how many inequivalent phases there are, amounts to
asking how many different maps Q(~k) as in (4) there are
which cannot be continuously deformed into each other.
This question, on the other hand, is answered11 by the
homotopy group of the map in (4).

Let us consider this in dimensions d = 2 and d = 3.
In d = 2 the relevant homotopy group is

Π2 [U(n+m)/[U(n)×U(m)]] = Z,

11 Besides the features described by the homotopy group (describing
so-called “strong topological” insulators), there are additional features
related to the fact that the Brillouin zone is a d-dimensional torus.
These are so-called “weak topological” features (see [10]) related to the
presence of layers of topological insulators [25], i.e., in one dimension
less than the space dimension d. So-called “weak topological insula-
tors” possess only the latter, by not the former topological features.



where Z is the set of all integers. This means that for ev-
ery integer there exists a band insulator in d = 2 dimen-
sions in symmetry class A, and band insulators corre-
sponding to different integers cannot be continuously de-
formed into each other without crossing a quantum phase
transition. We have encountered precisely these band in-
sulators already in example (i). These are the quantum
Hall insulators, and the integer characterzing the insula-
tor denotes precisely the number of chiral edge states.
When the number of edge states changes, a quantum
phase transition necessarily has to be crossed. These are
precisely the well studied quantum Hall plateau transi-
tions (driven by disorder).12

Let us now move on to d = 3 dimensions, still remain-
ing in symmetry class A. Now the relevant homotopy
group is (for sufficiently large values of n and m)

Π3 [U(n+m)/[U(n)×U(m)]] = {1},
which is the trivial group of only one element, as indi-
cated. This means that here band insulators can only be
in one phase. In d = 3 spatial dimensions there are hence
no non-trivial topological insulators in symmetry class
A.

Are there then any topologically non-trivial band in-
sulators in d = 3 dimensions at all? The answer13 is
“yes”. We can see this for example from the observation
that the presence of SLS is a potential “source” of non-
trivial topological behavior. A look at Table 1 reveals that
there are five symmetry classes which possess SLS, i.e.,
which have entries SLS= 1. (This, as it turns out, does
not mean however, that there are non-trivial topological
band insulators in all these five symmetry classes.) What
is the technical benefit of SLS? It arises from the ob-
servation14 that the presence of this symmetry implies
that the Hamiltonian H can be brought into block off-
diagonal form, i.e., that

Q(~k) =
(

0 q(~k)
q†(~k) 0

)
, where q(~k) is unitary.

(5)
Consider now the simplest symmetry class with SLS=
1, which possesses no symmetry other than SLS. This
is symmetry class AIII (4th row of Table 1). Due to
the lack of any additional symmetry constraint, q(~k) is
an arbitrary unitary matrix, which fully characterizes a

12 The field theory describing this transition is the d = 2 dimensional
NLSM on the target space listed for class A in the last column of
Table 1, supplemented by a (topological) theta term [26].
13 We have already mentioned in example (iii) of the Introduction
(Section A) that there exist in d = 3 topological insulators in the
presence of strong spin-orbit interactions. In the language of Table 1
and Table 2, these belong to symmetry class AII, and will be discussed
below.
14 which is easy to check; see [1].

phase of the band insulator in this symmetry class. Thus,
as in the case of class A considered before, we now need
to investigate the homotopy group of maps from the BZ
into the group U(m) of unitary matrices. This homotopy
group is non-trivial in d = 3 dimensions,

Π3 [U(m)] = Z.

This means that in symmetry class AIII there exists
a distinct band insulator for every integer, and band
insulators characterized by different integers cannot be
adiabatically deformed into each other without crossing
a quantum phase transition. For completeness, let us
also give the explicit form of the integer ν

(
q(~k)

)
, as a

function of q(~k) which characterizes the Hamiltonian:

ν
(

q(~k)
)

=

=
∫

BZ

d3~k
24π2 εµνρ tr

[
(q−1∂µ q)(q−1∂ν q)(q−1∂ρ q)

]
,

(6)
where εµνρ is the usual totally antisymmetric tensor
(ε123 = +1).

Having presented the appearance of topological prop-
erties for band insulators in the two symmetry classes A
and AIII, we will now briefly comment on how to extend
this to the other classes, even though we will use a dif-
ferent approach to arrive at the classification scheme, to
be discussed in the next section. For the (five) symmetry
classes with SLS= 0, the (simplified) Hamiltonian Q(~k)
will satisfy additional conditions. For example, in sym-
metry class AII [mentioned in example (iii)], the TRS
condition has to be imposed which reads

σ y Q∗(~k) σ y = Q(−~k). (7)

Even though in d = 3 dimensions there existed only a
single phase in class A (where Q(~k) was subject to no
constraints), the set of all Hamiltonians satisfying the ad-
ditional constraint (7) turns out to consist of two phases
(or sectors) which cannot be continuously deformed into
each other. Similarly, for all other symmetry classes with
SLS= 1, there will be certain constraints on the matrices
q(~k), which appeared in (5). For example, in symmetry
class CI one turns out to have qt(−~k) = q(~k). A list of
these constraints for all ten symmetry classes is provided
in Table III of [1].

D. CLASSIFICATION OF d = 3
TOPOLOGICAL INSULATORS

(SUPERCONDUCTORS)

In this section we review the classification of d = 3 topo-
logical insulators (superconductors). This provides the
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z
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FIGURE 5. Domain wall arising form the change of sign of
Dirac mass term.

main result of the work in [1], namely the last column
of Table 2. Our approach is the one already mentioned in
the Introduction (Section A). We focus on the robustness
of the gapless boundary (surface) degrees of freedom:
for every topological d = 3 bulk insulator (superconduc-
tor) in one of the ten symmetry classes of Hamiltonians,
listed in Table 1, there appear gapless degrees of free-
dom at its boundaries. These gapless boundary degrees
of freedom cannot be gapped or localized by any per-
turbations or deformations of the Hamiltonian, whether
these are (i) spatially uniform or whether they (ii) break
translational invariance (i.e., are “random”), as long as
these perturbations preserve the symmetries of the given
symmetry class (Table 1). Our approach thus consists in
going through the ten symmetry classes of Hamiltonians
in Table 1, in d = 2 dimensions (describing the boundary
degrees of freedom), and checking whether localized or
gapped boundary degrees of freedom are possible or not
in each class. If localized or gapped boundary degrees of
freedom are not possible, then there exists a d = 3 topo-
logical insulator (superconductor) in this symmetry class
(possessing these gapless boundary degrees of freedom).

In this analysis one needs to recognize the importance
of one extra ingredient: it is well known that d = 3 mas-
sive Dirac Hamiltonians possess topological properties;
more specifically, when changing the sign of the Dirac
mass term by letting that mass vary between positive and
negative values, say, in one direction (e.g., in the z di-
rection, so that the mass is m(z) as sketched in Fig. 5), a
gapless d = 2 Dirac fermion degree of freedom will ap-
pear at the “domain wall” where the mass goes through
zero [27, 28, 29]. This shows that in general one needs
to allow for the Hamiltonian of the boundary degrees
of freedom to be of Dirac form (we will discuss this
shortly in somewhat more detail below). This is impor-
tant because it was recently demonstrated by Bernard and
LeClair [30] that there are exactly 13 and not just 10
symmetry classes of Dirac Hamiltonians in d = 2 dimen-
sions. This is due to the fact that a d = 2 Dirac Hamilto-
nian has a special 2× 2 block structure (see (8) below),

allowing for a “fine structure” of the general classifica-
tion of Table 1. Bernard and LeClair’s result thus means
that some of the ten symmetry classes from Table 1 sub-
divide into subclasses, and this is important for our dis-
cussion.

In short, a d = 2 Dirac Hamiltonian is of the form

H =

(
V+ +V− −i ∂

∂ z̄ 1+A+

+i ∂
∂ z 1+A− V+−V−

)
, (8)

where z = x + iy, z̄ = x − iy represent the d = 2-
dimensional spatial coordinates, and A+

† = A−, and
V±† = V± are M×M matrices, which are in general15

functions of (x,y) [here 1 is the unit matrix]. We will
refer to M as the number of flavors of d = 2 Dirac
fermions.

Now, the findings of Bernard and LeClair [30] are easy
to state:16 in d = 2 dimensions there are 13 symmetry
classes of Dirac Hamiltonians (8) because the three sym-
metry classes AIII, DIII and CI from Table 1 subdivide
each into two subclasses.

Since it may be useful for some readers to see the rel-
evance of the Bernard-LeClair classification in the case
of the “quantum spin Hall”, or “Z2-topological insulator”
in d = 3 dimensions [example (iii) from the Introduction,
Section A], we will briefly review this connection in the
following subsection. In the subsequent subsection we
will discuss all other symmetry classes.

D.1 Z2-topological insulator in d = 3 (d = 3
version of the “quantum spin Hall” state)

The work of Bernard and LeClair [30] tells us17 that
there exists a d = 2 Dirac Hamiltonian in symmetry class
AII (Table 1) with only a single flavor M = 1 (in gen-
eral, an odd number M) of Dirac fermions. It is known
that a single flavor cannot be realized in a d = 2 lat-
tice model (due to the familiar “fermion doubling” phe-
nomenon). Therefore, this situation must correspond to
the boundary of a d = 3 topological insulator in symme-
try class AII. Recall that this symmetry class refers to
the presence of a time-reversal symmetry whose (anti-
unitary) time-reversal operator squares to −1, and is rel-
evant for systems possessing spin-orbit coupling. Indeed,
a single flavor Dirac fermion was constructed explicitly
by Fu, Kane, and Mele [12] at the d = 2 boundary of a
three-dimensional (quantum spin Hall) Z2 topological in-
sulator. Bernard and LeClair show that the most general
d = 2 Dirac Hamiltonian with a single flavor is a 2× 2

15 for non-homogeneous (“random”) systems.
16 For more details see the third column of Table III in Ref. [1].
17 See, e.g., third column of Table III in Ref. [1], or Eq. (2.19) of [30].



TABLE 3. Subdivision of Symmetry Classes AII, DIII and CI for d = 2 Dirac Hamiltonians

Cartan nomenclature TRS PHS SLS Bernard-LeClair M = # of fermion species

AIII 0 0 1 (AIII)o (2m−1)
(AIII)e 2m

DIII -1 +1 1 (DIII)o (2m−1)
(DIII)e 2m

CI +1 -1 1 (CI)o (2m−1) ·2
(CI)e (2m) ·2

matrix of the form

H = (−i)[σx(∂/∂x)+σy(∂/∂y)]+V (x,y)1, (9)

where V (x,y) is a “scalar potential”. It has long been
known[29, 31] that this Hamiltonian lies in symmetry
class AII of Table 1. Recent work established that this
Hamiltonian cannot lead to localized states [32, 33, 34,
35]: indeed, in the presence of a random scalar potential
V (x,y) the system behaves at large length scales always
like a simple diffusive metal.

D.2 Topological insulators
(superconductors) in d = 3: all cases

In the previous subsection we have seen that there ex-
ists a topological insulator in symmetry class AII in d = 3
dimensions, because the boundary degrees of freedom
cannot be localized. In the presence of the only possi-
ble disorder potential in this symmetry class, the system
becomes the simplest possible disordered metallic con-
ductor.

Let us now turn our attention to the three symmetry
classes AIII, DIII and CI which, as already mentioned
above, subdivide into two subclasses each, when d = 2
Hamiltonians with a Dirac structure (8) are considered.
As summarized in Table 3 these two subclasses simply
correspond to whether the number M of flavors is even
or odd. (More precisely this is the case for the two
symmetry classes AIII and DIII; on the other hand, for
the time-reversal invariant Hamiltonians in class CI, the
number of flavors M is an even or an odd number of
Kramers doublets, so that M = (2n− 1) · 2 or = 2n · 2.)
As it turns out, the symmetry constraints in the special
symmetry classes (AIII)o, (CI)o, and (DIII)o force [30]
both potentials V± in (8) to vanish identically. Only
the potentials A± can be non-vanishing: these, on the
other hand, are nothing but non-Abelian gauge potentials
in the three classical groups (unitary, orthogonal, and
symplectic, for (AIII)o,(DIII)o, and (CI)o, respectively).

Let us summarize this result:

U(2m−1) (AIII)o
SO(2m−1) for (DIII)o

Sp[2(2m−1)] (CI)o

. (10)

Now, the important physical consequence of the fact that
the symmetries in classes (AIII)o,(DIII)o, and (CI)o, al-
low only for the presence of gauge potentials is that
such potentials, whether homogeneous or random, can-
not (see, e.g., [29, 36, 37, 38, 39]) localize or gap out
the Dirac fermions (which are certainly gapless in the
absence of any potentials). The behavior of d = 2 Dirac
fermions in the presence of these random potentials is
a well-studied problem (see, e.g., [29, 36, 37, 38, 39]):
even though disorder may lead to highly non-trivial and
interesting behavior18, the value of the longitudinal sur-
face conductivity19 is unchanged by this type of disor-
der. This means that irrespective of the presence of disor-
der, the longitudinal surface conductivity σxx is 1

π (e2/h)
times the number of Dirac fermion flavors M. (In the case
of spin- or thermal conductivity, σ spin

xx or κxx/T , the con-
ductance unit (e2/h) has of course to be replaced by the
corresponding unit [1].) The number M of Dirac fermion
flavors is directly related to the integer-valued topologi-
cal “winding number” ν , discussed in (6) in the spatially
homogeneous case. Thus, the longitudinal surface con-
ductance is a direct measure of the topological index of
the bulk of the topological insulator (superconductor) in
these symmetry classes.

It remains to discuss symmetry class CII. One can
show [1] that in this class of Dirac Hamiltonians nei-
ther spatially homogeneous nor inhomogeneous (ran-
dom) potentials can gap out or localize the d = 2 sur-
face degrees of freedom if the number of Dirac fermion
species is an odd multiple of two, corresponding to an
odd number of Kramers doublets (this class possesses

18 see, e.g., [22] for the example of the topological superconductor
in symmetry class CI; Ref. [22] includes also a corresponding brief
discussion of the cases AIII and DIII.
19 thermal (κxx/T ) or, if SU(2) spin rotation symmetry is preserved by
the Hamiltonian, spin conductivity σ spin

xx for superconductors.



time reversal symmetry). One can also show that this
corresponds only to a Z2 classification, corresponding to
M = 0 (topologically trivial) and M = 2 (topologically
non-trivial); changing M by four (i.e., by two Kramers
doublets) does not lead to a topologically different state.

Finally, it is very easy to see [1] from the Bernard-
LeClair classification that in all the remaining symmetry
classes of the 10 classes (i.e., in classes A, AI, BDI, D, C)
the d = 2 Dirac Hamiltonian can be made fully gapped
while keeping all defining symmetries of the class intact.
By performing these steps, we arrive at the results listed
in the last column (entitled “d = 3”) of Table 2. This is
our main result, obtained in [1].

E. CLASSIFICATION OF d = 2
TOPOLOGICAL INSULATORS

(SUPERCONDUCTORS)

We briefly summarize from [1] the classification of d = 2
topological insulators (superconductors). It may be use-
ful for the reader to follow the discussion by keeping an
eye on Table 2. There are three well known symmetry
classes which support topological insulators (supercon-
ductors) in d = 2: these are symmetry classes A, D, and
C, all of which break time-reversal symmetry, and are all
known [40, 2, 41, 42, 43] to possess a quantum Hall insu-
lating state. The latter manifests itself by the appearance
of chiral edge states. Classes A and D were discussed
in examples (i) and (ii) in the Introduction (Section A),
and class C is known as the so-called spin quantum Hall
effect [42, 43] (not to be confused with the “quantum
spin Hall state” discussed in example (iii) of the Intro-
duction). Since these states may possess any number of
chiral edge states, the different topological sectors of the
d = 2 insulators (superconductors) are characterized by
integers. This is the origin of the entries Z in the penul-
timate column of Table 2. This same column contains
in addition an entry Z2 in the row labeled AII: this is
the d = 2 “quantum spin Hall” insulator discussed in ex-
ample (iii) of the Introduction. It remains to discuss the
row labeled DIII. This case was treated in [44], where the
authors studied the localization physics of (quasi-) one-
dimensional systems: the authors found that a (quasi-
) one-dimensional Hamiltonian in symmetry class DIII
cannot be localized or gapped if there is an odd number
of one-dimensional modes. This situation can be real-
ized [1, 45, 46] in chiral p-wave superconductors with
opposite chiralities [(px + ipy) and (px − ipy) pairing
symmetries]. Moreover, in the remaining five symmetry
classes of Table 2, (quasi-) one-dimensional Hamiltoni-
ans will always generically be localized or gapped. This
is related, in great generality, to the well-known “12-fold

way” classification scheme20 of random transfer matri-
ces, summarized in Table IV of [1].

F. CLASSIFICATION OF d = 1
TOPOLOGICAL INSULATORS

(SUPERCONDUCTORS)

Again, we proceed [1] as for dimensions d = 2 and d = 3,
reviewed above: the diagnostic of a d = 1 topological in-
sulator (superconductor) is the appearance of gapless de-
grees of freedom at the boundaries. In d = 1 the bound-
aries are points. Thus, we need to check in which of
the 10 symmetry classes of Table 1 gapless degrees of
freedom (“zero modes”) appear at a point. The answer
to this question is known from random matrix theory21,
and was found for all 10 symmetry classes in 2001 by D.
Ivanov [47]. A summary of these results is displayed in
Table V of [1]. Using this information, one arrives at the
column entitled “d = 1” of Table 2.

G. DISCUSSION

Table 2 summarizes the main result of this work, the
classification of topological insulators (superconductors)
in spatial dimension d = 1,2, and 3.22 The symme-
try classes in Table 2 are organized according to the
physical systems these symmetry classes represent (three
Wigner-Dyson classes of standard electronic systems;
three Wigner-Dyson classes with extra (“sublattice” or

20 Two of the ten symmetry classes undergo a subdivision; these are
precisely the symmetry classes AII and DIII where Z2 topological
insulators exists in d = 2. The existence of these topological states
is precisely related to this splitting. This is similar to what happened
in the Bernard LeClair classification scheme [30] for d = 2 Dirac
Hamiltonians, discussed in Section D.
21 describing Hamiltonians in spatial dimension d = 0
22 One can understand the presence of the key signatures of topological
insulators, namely, the stability of their gapless nature and the complete
absence of Anderson localization for boundary degrees of freedom, us-
ing a variety of techniques and from different points of views. The fol-
lowing presents yet another slightly different way of thinking about
this. The Anderson localization problem at the boundary of topological
insulators can also be discussed in terms of the NLSM formalism in a
rather unified fashion. (We may choose here the so-called “fermionic
replica” formulation (see the last column in Table 2), but we may,
equivalently, choose the formulation using supersymmetry [23].) When
the NLSM formalism is applied to describe effects of disorder on the
gapless boundary degrees of freedom, the fact that these boundary de-
grees of freedom completely evade Anderson localization is signaled
by an additional term which can be added to the NLSM action. De-
pending on the symmetry class and spatial dimensions, it takes on the
form of either a topological or a Wess-Zumino-Witten (WZW) term. In
turn, the presence or absence of a topological or WZW term for a given
symmetry class in d dimensions can be read off from Bott periodicity
– see below. (Compare also footnote 9.)



TABLE 4. Reorganizing Table 2 by reordering the symmetry classes and grouping them into two
separate lists reveals a regular pattern, which was recently pointed out by A. Kitaev Ref. [16].

Cartan nomenclature TRS PHS SLS Hamiltonian d = 1 d = 2 d = 3

AIII (chiral unit.) 0 0 1 U(N+M)/U(N)×U(M) Z - Z
A (unitary) 0 0 0 U(N) - Z -

BDI (chiral orthog.) +1 +1 1 SO(N+M)/SO(N)×SO(M) Z - -

D 0 +1 0 SO(2N) Z2 Z -

DIII −1 +1 1 SO(2N)/U(N) Z2 Z2 Z
AII (symplectic) −1 0 0 U(2N)/Sp(2N) - Z2 Z2

CII (chiral sympl.) −1 −1 1 Sp(2N+2M)/Sp(2N)×Sp(2M) Z - Z2

C 0 −1 0 Sp(2N) - Z -

CI +1 −1 1 Sp(2N)/U(N) - - Z
AI (orthogonal) +1 0 0 U(N)/O(N) - - -

“chiral” symmetry: SLS= 1); four classes of BdG Hamil-
tonian in superconductors). While such an ordering is
natural from the physics point of view, it hides an un-
derlying mathematical structure, namely a periodicity in
spatial dimension d, which was recently pointed out by
Kitaev [16]. To uncover this periodicity we have reor-
ganized Table 2 by reordering the symmetry classes and
grouping them into two separate lists (see Table 4). The
upper list in Table 4 contains only the two unitary classes
A and AIII, both of which have neither TRS nor PHS
(discussed in Sec. B). These two classes are related to
the two types of classifying spaces appearing in complex
K-Theory of Ref. [16]. We see from the reordered Ta-
ble 4 that an alternating pattern (period 2) in the spatial
dimension d becomes apparent: i.e., the class AIII topo-
logical insulator can only exist in odd spatial dimensions,
while the class A topological insulator (i.e., the integer
quantum Hall insulator) occurs only in even spatial di-
mensions. The lower list in Table 4 (classes BDI, D, · · ·,
AI) contains all the remaining classes; those are the ones
that have at least either TRS or PHS. These eight classes
are related to the eight types of classifying spaces appear-
ing in real K-Theory, discussed in Ref. [16]. An obvious
regular pattern emerges when looking at the reordered
Table 4: as the spatial dimension d is increased by one,
the topological insulators (superconductors) move down
by one column. It was shown by Kitaev that this regular
pattern is due to an 8-fold periodicity in d, the Bott peri-
odicity of real K-theory. Taking this result from K-theory,
we can extend our result to dimensions d > 3. For exam-
ple, Table 4 suggests that in d = 4 there is a topological
insulator whose topologically distinct sectors are classi-
fied by integers Z, which belongs to symmetry class AII.
Indeed, Qi et al. [48] have recently shown that the Z2
topological insulators of the class AII in d = 2 and 3 can
be obtained as descendants from this four-dimensional Z

topological insulator using dimensional reduction.
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