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Abstract. The statistics of normalized wavefunctions in the one-dimensional (1d) Anderson model of localization is
considered. It is shown that at any energy that corresponds to a rational filling factor f = p

q there is a statistical anomaly
which is seen in expansion of the generating function (GF) to the order q−2 in the disorder parameter. We study in detail the
principle anomaly at f = 1

2 that appears in the leading order. The transfer-matrix equation of the Fokker-Planck type with a
two-dimensional internal space is derived for GF. It is shown that the zero-mode variant of this equation is integrable and a
solution for the generating function is found in the thermodynamic limit.
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INTRODUCTION

Anderson localization (AL) enjoys an unusual fate of be-
ing a subject of advanced research during a half of cen-
tury. The seminal paper by P.W.Anderson [1] opened up
a direction of research on the interplay of quantum me-
chanics and disorder which is of fundamental interest
up to now [2]. The one-dimensional tight-binding model
with diagonal disorder –the Anderson model (AM)–
which is the simplest and the most studied model of this
type, became a paradigm of AL:

Ĥ = ∑
i

εi c†
i ci−∑

i
ti
(

c†
i ci+1 + c†

i+1ci

)
. (1)

In this model the hopping integral is deterministic ti = t
and the on-site energy εi is a random Gaussian vari-
able uncorrelated at different sites and characterized by
the variance 〈(δεi)2〉= w. The dimensionless parameter
α2 = w/t2 describes the strength of disorder.

The best studied is the continuous limit of this model
in which the lattice constant a → 0 at ta2 remaining fi-
nite [3, 4, 5, 6]. There was also a great deal of activity
[8, 7] aimed at a rigorous mathematical description of
1d AL. However, despite considerable efforts invested,
some subtle issues concerning 1d AM still remain un-
solved. One of them is the effects of commensurability
between the de-Broglie wavelength λE (which depends
on the energy E) and the lattice constant a. The parame-
ter that controls the commensurability effects is the fill-
ing factor f = 2a

λE
(fraction of states below the energy E).

It was known for quite a while [9, 10] that the Lya-
punov exponent takes anomalous values at the filling fac-
tors equal to 1

2 and 1
3 (compared to those at filling fac-

tors f beyond the window of the size α2 ¿ 1 around
f = 1

2 and f = 1
3 ). At weak disorder the Lyapunov ex-

ponent sharply decreases at f = 1
2 (which is usually as-

sociated with increasing the localization length). How-
ever, near f = 1

3 the Lyapunov exponent exhibits a sharp
peak if the third moment of the on-site energy distribu-
tion is non-zero [10]. More recently [12, 13] it was found
that the statistics of conductance in 1d AM is anomalous
at the center of the band that corresponds to the filling
factor f = 1

2 . We want to stress that all these anomalies
were observed for the AM Eq.(1) in which the on-site
energy εi is random. This Hamiltonian does not possess
the chiral symmetry [14, 2] which is behind the statis-
tical anomalies at the center of the band E = 0 in the
Lifshitz model described by Eq.(1) with the deterministic
εi = 0 and a random hopping integral ti. Thus the statis-
tical anomaly at f = 1

2 raises a question about a hidden
symmetry that do not merely reduce to the two-sublattice
division [14, 13, 2].

The above results point out to existence of the entire
devil’s staircase of statistical anomalies at a rational fill-
ing factor f in different physical quantities of 1d An-
derson model. There are numerous questions concerning
physics behind the anomalies. One of such puzzles is the
sign of the variation of the Lyapunov exponent which
corresponds to suppression of localization in the vicinity
of f = 1

2 and to enhancement of localization near f = 1
3

(provided that there is an asymmetry of the on-site en-
ergy distribution). It is difficult to explain such behavior
by a conventional model invoking reflection off Bragg
mirrors with doubling or tripling the lattice period due to
peculiar fluctuations of the random landscape of εi [15],
as this model seems to favor localization in all cases.



A possible resolution of this conflict between phys-
ical intuition and mathematical results is that the Lya-
punov exponent describes only the tails of the localized
wavefunction while the global picture of localization is
better represented by the average inverse participation
ratio I =

∫
dx 〈|ψ(x)|4〉, where ψ(x) is a random nor-

malized eigenfunction obeying the Shroedinger equation
Ĥψ = En ψ and the boundary conditions on both ends of
the chain. Here it is worth noting that computing of I is
much more difficult than the problem of Lyapunov expo-
nent, since the latter does not require an eigenfunction of
the Shroedinger operator obeying all the boundary condi-
tions, while the inverse participation ratio is defined only
for normalizible eigenfunctions.

In this paper we give a regular description of the
phenomenon of the rational- f statistical anomalies in
terms of the generalized transfer-matrix equation (TME)
which is a universal tool to describe properties of a
generic 1d or quasi-1d system. As the result we obtain
the joint probability distribution (JPD) P(u,φ) of the
amplitude u and phase φ of the random eigenfunction
ψ ∼ √u cosφ which can be used to compute any local
statistics of normalized eigenfunctions of 1d AM.

We will show that the TME for f = 1
2 has anomalous

terms which make it essentially two-dimensional second-
order PDE depending on the amplitude variable u as well
as on the phase variable φ . Yet, we show that this equa-
tion has an exact solution for the zero mode and we find
this solution explicitly in quadratures. Similar anomalous
terms are shown to appear at any other rational filling
factor f = p

q .

DERIVATION OF THE TM EQUATION.

The starting point of our analysis is the TM equation for
the generating function (GF) Φ j(u,φ) on the lattice site
j:

Φ j+1(u,φ)=
(

1+
2a
`0

[L (u,φ)− c1(φ)u]
)

Φ j(u,φ−π f ),

(2)
where `0 = a 2t2

w sin2(π f ) is the "bare" local-
ization length; in the limit of weak disorder
L (u,φ) = c2(φ)u2∂ 2

u +c3(φ)(u∂u−1)+c4(φ)u∂u∂φ +
c5(φ)∂φ + c6(φ)∂ 2

φ . The coefficients ci(φ) are all com-
binations of cos(2φ) and sin(2φ) which at first glance
do not show any nice structure: c1(φ) = 1

2 (1+cos(2φ)),
c2(φ) = 1 − cos2(2φ), c3(φ) = −(1 − cos(2φ) −
2cos2(2φ)), c4(φ) = sin(2φ)(1 + cos(2φ)), c5(φ) =
− 3

2 sin(2φ)(1 + cos(2φ)), c6(φ) = 1
4 (1 + cos(2φ))2.

This equation has been derived in Ref.[16] by expansion
to the first order in α2 of the exact integral TME obtained
by the super-symmetry method [17].

The GF Φ(u,φ) determines the JPD P(u,φ) of eigen-
function amplitude and phase in the bulk in a long chain
P(u,φ). However the relationship between them is non-
trivial:

P(u,φ) =− 1
2πiu

∂u

∫ +i∞+0

−i∞+0

dy
y

ey Φ2(uy,φ). (3)

The main feature of Eq.(3) is that it is quadratic in
Φ(u,φ). This reflects the identical boundary conditions
at the two ends of a chain [18] and the fact that the point
of observation is in the bulk. In contrast to that in the
problem of Lyapunov exponent one considers essentially
a semi-infinite chain with points of observation close to
its end. In this case the GF itself plays a role of the
distribution function.

By construction [16] the function Φ j(u,φ) must be
periodic in φ with the period of π which corresponds to
the phase factor cosφ of the wave function sweeping all
possible values in the interval [0,π]. However, the shift
in the argument φ in the r.h.s. of Eq.(2) is by a fraction f
of π . For a rational f = p

q one has to make q iterations in
Eq.(2) in order to get a closed equation for the GF. In the
leading order in α we obtain:

Φ j+q(u,φ)−Φ j(u,φ) =
2a
`0

(4)

×
[

q−1

∑
r=0

L (φ − r π p/q)−u
q−1

∑
r=0

c1(φ − r π p/q)

]
Φ j(u,φ).

The reason for the principle anomaly at f = 1
2 is the

following identity that shows a jump at q = 2:

q−1

∑
r=0

e2iφ−2ir π p/q = 0,
q−1

∑
r=0

e4iφ−4ir π p/q =
{

0, q > 2
2e4iφ , q = 2

(5)
Assuming q ¿ `0/a, expanding the l.h.s. of Eq.(4) and
introducing the dimensionless coordinate x = ja/`0 we
obtain:

∂xΦ =
[

u2∂ 2
u −u+

3
4

∂ 2
φ

]
Φ+δ f , 1

2
∆L (u,φ)Φ. (6)

The second term in Eq.(6) is the anomaly that is present
only for the filling factor f = 1

2 . The corresponding
operator takes the form:

∆L = cos(4φ)
[
−u2∂ 2

u +2u∂u +
1
4

∂ 2
φ −2

]

+ sin(4φ)
[

u∂u∂φ − 3
2

∂φ

]
. (7)

Without this part, the variables u and φ are separated and
one can immediately find the independent of x solution
Φ(u) =

√
uK1(2

√
u). This zero mode solution describes



the limit of a long chain with the length L À `0. It has
been earlier obtained [6] in the continuous limit f ¿ 1.
It also arises in the theory of a multi-channel disordered
wire [17, 18]. Plugging this solution into Eq.(3) we ob-
tain the following probability distribution of |ψ|2 in a
long strictly one-dimensional system (amazingly, this re-
sult was not known before):

P(|ψ|2) =
`0

L
exp

(−|ψ|2`0
)

|ψ|2 . (8)

This distribution is valid for |ψ|2`0 À e−L/`0 and should
be cut off at very small |ψ|2 to ensure normalizability
[19].

At f = 1
2 the quantities u and φ are no longer indepen-

dent. Furthermore, the integrability of Eq.(6) – even in its
zero-mode variant– is not guaranteed. Yet, with a suitable
choice of co-ordinates the variables are separated in the
zero-mode TM equation.

SEPARATION OF VARIABLES.

The integrability of the zero mode TME Eq.(6) is shown
in three steps. The step one is to introduce new set of
variables u and v = ucos(2φ) instead of (u,φ) and a
new function Φ̃(u,v) = u−1 Φ(u, 1

2 arccos(v/u)). In these
variables the zero-mode TME Eq.(6) takes a very sym-
metric form:

[D2
1 +D2

3]Φ̃ =
u
2

Φ̃, (9)

where the operators D1 and D3 belong to the family of
three operators from the representation of the sl2 algebra:

D1(3) =±
√

u2− v2 ∂u(v), D2 = u∂v + v∂u, (10)

obeying the commutation relations:

[D1,D2] =−D3, [D3,D1] = D2, [D2,D3] = D1. (11)

Now it is clear that there is a hidden order in a set of
φ -dependent terms in Eq.(7) and the way they match the
regular part in r.h.s. of Eq.(6).

One can further extend the algebra including also the
operator u in the r.h.s. of Eq.(9). To this end we define:

B1 = v, B2 =
√

u2− v2, B3 = u. (12)

One can easily check that

[Bi,B j] = 0, [Di,B j] = ei jk Bk. (13)

The 6-dimensional algebra defined by Eqs.(11),(13) con-
stitutes the closed set of operators sufficient to formulate
all the symmetries of Eq.(9). Establishing the symme-
tries and the corresponding operators commuting with

the "Hamiltonian" D2
1 + D2

3 − 1
2 B3 is an important task

which was not accomplished so far. When achieved, it
would probably help to construct the new co-ordinates
(very much in the same way as the Kramers symmetry
for the 3D Coulomb problem helps to identify the set
of parabolic co-ordinates) which would allow for a com-
plete solution to the problem. However, for the time be-
ing we proceed with guessing the coordinates to separate
variables in the zero-mode problem.

The next step is to transform Eq.(9) to the
Schroedinger-like equation HΨ ≡ −(∂ 2

u + ∂ 2
v )Ψ +

U(u,v)Ψ = 0 for the function Ψ(u,v) = (u2 − v2)
1
4 Φ̃,

where

U =−3
4

u2 + v2

(u2− v2)2 +
1
2

u
u2− v2 . (14)

Finally we introduce the variables

ξ =
u+ v

2
= u cos2 φ , η =

u− v
2

= u sin2 φ . (15)

It is easy to see that in these variables the operator in
Eq.(14) becomes a sum of two identical one-dimensional
Hamiltonians H = Ĥξ + Ĥη where Ĥξ is given by:

Ĥξ =−∂ 2
ξ −

3
16

1
ξ 2 +

1
4ξ

. (16)

Thus in new variables Eq.(15) the TME Eq.(6) is sep-
arable also at f = 1

2 and can be reduced to the two
ODE’s of the Schredinger type Ĥξ ϕλ (ξ ) = λϕλ (ξ ) and
Ĥη ϕ−λ (η) = −λϕ−λ (η) which have a well-known so-
lution in terms of the hypergeometric functions (Whit-
taker functions) [21].

Remarkably, ξ and η play a role of the co-ordinate
and the momentum in the equivalent classical model of
kicked oscillator [11].

UNIQUENESS OF THE SOLUTION.

The general solution to the "Schroedinger equation"
HΨ = 0 is given by the integral over the parameter λ :

Ψ =
∫

dλdλ̄ c(λ , λ̄ ) ϕλ (ξ )ϕ−λ (η), (17)

where integration is generically over the complex plane
of λ and c(λ , λ̄ ) is an arbitrary function [22]. How does
this huge degeneracy comply with the intuitive expec-
tation that the statistics of wavefunctions in an infinite
disordered chain should be unique and independent of
the boundary conditions? Below we show that the natu-
ral physical requirements on Φ(u,φ) help to determine
GF up to a constant factor which can be further fixed us-
ing the wave function normalization 〈|ψ|2〉= 1

L .



First of all we note that F(λ ;ξ ,η) = ϕλ (ξ )ϕ−λ (η) is
a holomorphic function of λ , i.e. it depends only on λ =
ρeiσ but not on λ̄ = ρe−iσ . The idea is to represent the
integral over the complex plane as an integral over ρ and
σ and then rotate the contour of integration ρ → te−iσ

so that the dependence on σ remains only in c(λ , λ̄ ) and
in the integration measure but not in F(λ ;ξ ,η). Then
performing integration over σ one obtains a new function
C(t) = t

∫
dσ e−2iσ c(t, te−2iσ ) which stands for c(λ , λ̄ )

in an expression similar to Eq.(17) but involving only a
one-dimensional contour integral. This contour can be
further rotated to make the expression more symmetric.
Thus without loss of generality we write a solution to the
zero-mode TM equation Eq.(9) for f = 1

2 :

Φ(ξ ,η) =
ξ +η

(ξ η)1/4

∫ ∞

0
dλ C(λ ) (18)

×
[
W−λε, 1

4

(
ε̄ξ
4λ

)
W−λ ε̄ , 1

4

(εη
4λ

)
+ c.c

]
.

Here Wκ,µ(z) is the Whittaker function [21]; ε = eiπ/4,
ε̄ = e−iπ/4, and C(λ ) is a real function yet to be deter-
mined.

Before we proceed with determining this function it is
important to establish its properties as λ → 0. To this
end we note that 〈|ψ|2〉 =

∫
dφ duu cos2 φ P(u,φ) ∝∫

dφ cos2 φ Φ2(0,φ). This is immediately seen upon in-
tegration by parts over u in Eq.(3). Thus the GF Φ(ξ ,η)
must tend to a finite limit as ξ → 0 and η → 0. Given the
asymptotic behavior of Whittaker functions this is equiv-
alent to:

C(λ ) = λ−
3
2 C̃(λ ), C̃(0) = const. (19)

GF defined by Eq.(18) is periodic in φ with the period π
2

as it should be for q = 2. This is guaranteed by the adding
of the c.c term in Eq.(18). What is not automatically
guaranteed is that Φ(ξ ,η) is smooth as a function of
φ at φ = 0. We will see that it is the requirement of
smoothness at φ = 0 which fixes (up to a constant factor)
the unknown function C̃(λ ).

Indeed, the discontinuity of derivatives at φ = 0 may
arise from the branching of the expression in Eq.(18)
at a small η . From the representation of the Whittaker
function in terms of the hypergeometric functions one
concludes that the general solution Eq.(18) is a sum of a
part which is regular in the vicinity of η = 0 and a part
which has a square-root singularity

√
η ≈ √

u|φ |. The
condition that this latter part cancels out in the solution
Eq.(18) is the following (t is real):

ℑ

[
C̃(ε̄t)

Γ
( 1

4 − it
) e−

iη
8t 1F1

(
3
4
− it,

3
2
,

iη
4t

)]
= 0.(20)

The crucial fact for the possibility to fulfil this condition
is the identity for the hypergeometric functions [21]:

e−z/2
1F1

(
3
4
− it,

3
2
,z

)
= ez/2

1F1

(
3
4

+ it,
3
2
,−z

)
.

(21)
Now one can immediately guess the solution for C̃(λ ):

C0(λ ) = Γ
(

1
4

+ ελ
)

Γ
(

1
4

+ ε̄λ
)

. (22)

It is easy to see that the general solution to Eq.(20)is

C̃(λ ) = C0(λ )S(λ ) = C0(λ )
∞

∑
k=0

ak λ 4k, (23)

where the function S(λ ) must be regular in the entire
complex plane of λ . Now we apply the condition of
convergence of the integral over λ in Eq.(18) at large
λ to find the allowed asymptotic behavior of S(λ ) at
λ → ∞. Substituting Eq.(23) into Eq.(18) and using the
asymptotics of the Whittaker and Γ-functions we find
that the integrand behaves as λ−3S(λ ) at λ → ∞. This
means that |S(λ )| should increase not faster than λ 2.
There is only one such entire function with the structure
of Eq.(23): this is a constant S(λ ) = a0 = const. This
constant has to be determined from the normalization
condition 〈|ψ|2〉= L−1 using Eq.(3)

CONCLUSION AND DISCUSSION

Eqs.(18),(19),(22) is the main result of the paper. They
give an exact and unique solution for the generating
function at f = 1

2 anomaly. The latter determines the
JPD of eigenfunction amplitude and phase, Eq.(3) which
can be used to compute all local statistics of the one-
dimensional Anderson model in the bulk of a long chain
L À `0. The integrability of TME Eq.(6) suggests that
there is a hidden symmetry of the problem at f = 1

2 . We
make a conjecture that this symmetry is naturally formu-
lated in the three dimensional space rather than in the
two-dimensional space (ξ ,η) and that it has to do with
the symmetry of the 3d harmonic oscillator. This con-
jecture is based on an analogy between our main result
Eq.(18) and the expression for the Green’s function of the
3d harmonic oscillator problem [23]. This analogy con-
cerns the parameter (λ in our problem and k in Ref. [23])
entering both in the argument of the Whittaker functions
and in its first index in a mutually reciprocal way, as well
as the second index of the Whittaker functions being 1

4
in both cases. Establishing this symmetry would also be
useful for studying the anomalies at f = p

q with q > 2.
We have obtained [20] the anomalous operator

∆(3)L (u,φ) which stands for ∆L in Eq.(6) at f = 1
3



and shown that the mechanism similar to Eq.(5) is also
responsible for the anomaly at f = 1

3 . The results of this
study will be published elsewhere.
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