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Abstract. Entanglement entropy is a measure of quantum correlations between separate parts of a many-body system, which
plays an important role in many areas of physics. Here we review recent work in which a relation between this quantity and
the Full Counting Statistics description of electron transport was established for noninteracting fermion systems. Using this
relation, which is of a completely general character, we discuss how the entanglement entropy can be directly measured by
detecting current fluctuations in a driven quantum system such as quantum point contact.
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INTRODUCTION

Density matrices as a tool for describing quantum-
mechanical systems when only partial information about
the quantum state is available were introduced in quan-
tum mechanics by Landau in 1927 [1]. In this work,
called “The problem of damping in wave mechanics,” he
was interested in irreversibility of certain quantum me-
chanical processes, such as the spontaneous decay of ex-
cited atomic states. Such irreversibility is not inherent
to quantum mechanics, it arises from a fully reversible
quantum evolution of a larger system, including the vari-
ables describing radiation. More generally, Landau was
concerned with the situation when some variables needed
to completely describe the system cannot be measured.
In such cases the imprecision of our knowledge renders
the quantum state vector ψ a useless quantity. Instead,
a density matrix must be used, which is defined in the
subspace of the system’s Hilbert space spanned by those
states which can be measured, ρ = ∑i j ρi j|i〉〈 j|.

Another generalization of quantum mechanics in
which density matrices feature prominently is quantum
statistical mechanics. It was developed, also in 1927, by
von Neumann [2], as a way to introduce statistical de-
scription in quantum theory. In this approach, a quantum
system can occupy states |i〉, forming an orthonormal
set, with statistical probabilities 0 ≤ pi ≤ 1. Such a
system is described by ρ = ∑i pi|i〉〈i|, which is nothing
but a diagonal representation of the density matrix. In
this work, von Neumann first wrote his famous formula
for the entropy,

S =−Tr(ρ logρ) =−∑
i

pi log pi, (1)

which is a proper extension of the Gibbs entropy (and
the Shannon entropy) to the quantum case. For a set of N

states, the entropy (1) can take values varying between 0
(for a pure state) and logN, realized when all states are
occupied with equal probabilities.

FIGURE 1. Entanglement between two regions, A and B,
probed by an observer who can perform measurements only
in region A but not in region B. The quantum state of the
entire system A + B, described by the state vector |0〉, must
be “projected” on A, giving ρA = TrBρ0, where ρ0 = |0〉〈0|.
Due to entanglement between variables in A and in B, the
projected state is typically a mixed state, ρA 6= ρ2

A, even when
the whole system is in a pure state. The von Neumann entropy
of the projected state, Eq.(2), is a measure of the entanglement
between A and B.

The two aspects of the density matrix, emphasized
by Landau and von Neumann, the lack of information
about the quantum state in the situation when some vari-
ables are not measureable, and the connection with sta-
tistical description, are combined in the notion of entan-
glement entropy. This quantity was introduced in 1986
when Bombelli et al. [3] proposed to use von Neumann
entropy, mutual for different parts of a quantum system,
as a model of the Bekenstein-Hawking entropy of black



holes. They considered a situation when a quantum-
mechanical system is described by a pure state which is
delocalized between two regions A and B of its config-
uration space, such that only one of those regions, A, is
accessible for physical measurement (see Fig.1). An ob-
server situated in region A, after performing a full set of
measurments available to him or her, will describe the
system by a reduced density matrix ρA = TrBρ , where
ρ = |0〉〈0| describes the pure state of the whole system
and TrB denotes a trace taken over all variables in region
B. The von Neumann entropy associated with the pro-
jected state, defined as

SA =−TrρA logρA, (2)

is a characteristic of entanglement between quantum
variables in the regions A and B. One can easily check
that entanglement entropy does not change when regions
A and B are interchanged, SB = SA.

These ideas were developed further by Callan and
Wilczek [4], and Holzhey, Larsen and Wilczek [5] who
considered a 1+1 dimensional system described by con-
formal field theory. Taking region A to be an interval of
length `, they found that the entanglment entropy obeys
the relation

S =
c+ c̄

6
log

`

a
(3)

where c (c̄) is a central charge of the conformal field the-
ory, and a is a microscopic cutoff length. This finding,
which showed that entanglement entropy is sensitive to
fundamental characteristics of a quantum system, moti-
vated many further studies in which entanglement en-
tropy has been used as a tool to analyze many-body states
of a variety of different systems [6, 7, 8, 9, 10, 12, 11, 13,
14, 15, 16, 17].

Entanglement entropy, serving as a general charac-
teristic describing quantum many-body correlations be-
tween two parts of a quantum system, provided a frame-
work for analyzing quantum critical phenomena [6, 7, 8]
and quantum quenches [9, 10, 12, 11]. Recently it was
used as a probe of complexity of topologically ordered
states [15, 16, 17]. In addition, this quantity is of fun-
damental interest for quantum information theory as a
measure of the resources available for quantum computa-
tion [13] as well as for numerical approaches to strongly
correlated systems [14].

MEASURING THE MANY-BODY
ENTANGLEMENT

The universal appeal of entanglement entropy arises, at
least in part, from the fact that this quantity is defined
solely in terms of the many-body density matrix of the
system, with no relation to any particular observables

whatsoever. This is the main reason this quantity has
found applications in such diverse fields as cosmology,
field theory, condensed matter theory, and quantum in-
formation. However, for the very same reason, it has not
been clear how to access this quantity experimentally,
since measuring the entire density matrix of a many-body
systems represents a formidable task. Indeed, the many-
body density matrix depends on coordinates of all parti-
cles in the system, which usually cannot be measured all
at once.

Based on what was just said, the very idea of measur-
ing a quantity that encodes information about many-body
correlations of a large number of particles, which is what
the entanglement entropy is, may seem totally bizarre.
Yet, the situation with the entanglement entropy is dif-
ferent from that of the many-body density matrix. Re-
cently we have shown that a direct measurement of en-
tanglement entropy is possibe owing to its relation with
quantum noise of electric current [18].

The system analyzed in Ref.[18] is a quantum point
contact, representing an electron beam-splitter with
transmision and reflection coefficients tunable by exter-
nal gates [19]. In essence, the QPC serves as a door
between electron reservoirs, which can be opened and
closed on demand. By adjusting the voltage on the gates
of the QPC, different transmission channels in it can be
opened or closed individually, leading to quantized steps
in the QPC conductance (see Fig.2a).

The simplest protocol of driving the QPC that leads
to entanglement of many-body states in the reservoirs is
illustrated in Fig.2b. We start with the QPC in a closed
state, when the resrvoirs are disconnected, then the QPC
is opened during time t0 < t < t1, and then closed again.
In this process, most of the particles either remain in their
initial resrvoir, or are fully transmitted to another reser-
voir. Some particles, however, become delocalized be-
tween the two reservoirs, making the states in the two
reservoirs entangled. After the QPC is closed any com-
munication between the reservoirs becomes impossible.
This situation mimics that considered in the definition of
many-body entaglement, when an observer can perform
measurements only in one region but not in the other (see
Fig.1).

The state of two Fermi seas, coupled via the QPC as
shown in Fig.2b, evolves as a pure state until projection
on a specific reservoir is performed. After projecting on
reservoir L at t = t1, the density matrix takes the form

ρL(t1) = TrR(U(t1, t0)ρ0U†(t0, t1)), (4)

where ρ0 is the initial state, U is the many-body evolution
between t0 and t1, and TrR is a partial trace over degrees
of freedom in the lead R. Due to the exchange of particles
between reservoirs during t0 < t < t1, the resulting den-
sity matrix describes a mixed state with a nonzero von



Neumann entropy

SL =−TrρL(t1) logρL(t1) (5)

which characterizes entanglement buildup due to particle
exchange between reservoirs.

The evolution of two coupled Fermi seas, describing
this process, was analyzed in Ref.[18]. This can be done
exactly owing to the free fermion nature of the prob-
lem. It was found that all multi-particle correlations in
the Fermi sea that are relevant for entanglement are fully
accounted for by temporal correlations of electric current
flowing through the QPC. Specifically, there is a univer-
sal relation between the entanglement entropy (5) and the
full counting statistics of the charge transmitted through
the QPC. This relation, which we shall discuss below, is
of a completely general nature, independent of the details
of the protocol used to drive the QPC. As such it can be
used to obtain the entanglement entropy from measured
fluctuations of electric current.

The relation between entanglement and electric noise
has been at the center of the discussion of different ways
to generate entangled pairs in a driven electron system,
using transport in normal metal-superconductor junc-
tions [20, 21] and in the QPC [22, 23]. Such pairs, which
represent an electron analog of the recently demonstarted
entangled photon pairs [24], could be used for testing
Bell inequalities in a condensed matter system.

In contrast to Refs.[20, 21, 22, 23], here we are con-
cerned with entanglement of many-body states, repre-
sented by Fermi seas in the right and left reservoirs
shown in Fig.2b. This entanglement is generated by the
evolution of the full many-body fermion state happening
when the QPC is opened and then closed. In that, there
is an analogy with recent literature in which generation
of entanglement in time for critical Hamiltonians [9] and
for generic Hamiltonians [10, 12] was discussed.

The centerpiece of the approach of Ref.[18] is the re-
lation between many-body entanglement and a physical
measurement, which in this case is electric current fluc-
tuations. A relation of entanglement with another mea-
surable quantity, particle number statistics, was empha-
sized in Ref.[33]. In this paper a Fermi system with a
fixed total number of particles was considered in a setup
pictured in Fig.1. The many-body entanglement in this
system was expressed through the probability distribu-
tion of particle number in the region A. Similarly, in the
approach discussed here, we link the entanglement gen-
erated in a driven fermion system, such the QPC, to the
statistics of charge transmitted between reservoirs.

The relation between entanglement and counting
statistics of charge fluctuations, which we discuss below,
was derived in Ref.[18] for a noninteracting fermion
system. In the derivation we focus on the QPC as a
convenient model, however it will be clear that the result

is more general. The overall simplicity of the relation
between entanglement and counting statistics, and also
its independence of the details of the driving protocol,
suggests an even higher degree of generality. It would
be extremely interesting to find out whether a similar
relation holds for interacting many-body systems, such
as quantum spin chains, Luttinger liquids or Quantum
Hall liquids.

A PRIMER ON COUNTING STATISTICS

The Full Counting Statistics (FCS) approach has been
developed in the theory of quantum noise to describe cur-
rent fluctuations in nanodevices such as QPC and tun-
nel junctions [25]. These fluctuations can be character-
ized by the probability distribution of charge transmit-
ted through the device during the measurment. It is con-
venient to combine individual probabilities in a single
quantity, the generating function

χ(λ ) =
∞

∑
n=−∞

Pneiλn, (6)

where Pn is the probability to transmit n charges. The
auxiliary variable λ is sometimes called “counting field”
in the literature.

For example, a binomial distribution with the number
of attempts N and the probabilities to succeed and fail in
each attempt p and q = 1− p is described by

Pn =
(

N
n

)
pnqN−n, χ(λ ) =

(
1− p+ peiλ

)N
. (7)

Probability distribution of this form arises in the problem
of a DC-biased QPC [25].

The function χ(λ ) encodes all cumulants of FCS (or,
irreducible moments) via an expansion

log χ(λ ) =
∞

∑
m=1

(iλ )mCm

m!
. (8)

The lowest cumulants C1, C2, C3... describe properties
of the distribution Pn such as the mean n̄, the variance
〈(n− n̄)2〉, the skewness 〈(n− n̄)3〉, etc.

The 2nd cumulant C2 is available from routine noise
measurement. Recently, the 3rd cumulant C3 has been
measured in tunnel junctions [26, 27] and in QPC [28],
while cumulants up to 5th order where measured in
quantum dots [29, 30]. In fact, the method used in
Refs.[27, 28] yields the full probability distribution Pn
(see Fig.3); however, only the lowest moments C1, C2
and C3 of this distribution were found to be dominated
by intrinsic effects.

Theoretical description of electron transport in a QPC
involves scattering states constructed from the transmis-
sion and reflection amplitudes A(t), B(t), which in gen-
eral are time-dependent. In a Schrödinger representation,



the evolution of wavepackets undergoing scattering be-
tween the left and right reservoirs is described by

U
[|x〉L
|x〉R

]
=

[
B(tx) A(tx)
−A∗(tx) B∗(tx)

][|x(t)〉L
|x(t)〉R

]
, x < 0 < x(t),

and U |x〉L,R = |x〉L,R otherwise. Here x(t) = x+vF t is the
guiding center coordinate of a wavepacket, tx =−x/vF is
the time of arrival at the scatterer, vF is the Fermi veloc-
ity, and |x〉L,R describes incoming (x < 0) and outgoing
(x > 0) wavepacket states in the leads.

Crucially, the FCS generating function (6) can be ex-
pressed through the evolved many-body density matrix
of the initial state, projected on one of the leads after the
evolution is completed, as in Eq.(4). This relation, de-
rived in Refs.[34, 18], is outlined below, and then used to
find the entanglement entropy.

There are certain general properties of the evolved
density matrix in a noninteracting fermion system which
are best understood by considering evolution of a gaus-
sian state

ρ =
1
Z

exp

(
−∑

i j
Hi ja

†
i a j

)
, Z = det(e−H +1), (9)

where H is a general hermitian operator in the single-
particle Hilbert space, and Z is the normalization factor.
The state of interest, describing the QPC at zero temper-
ature, represents a particular case of Eq.(9).

One property which greatly simplifies the analysis,
is that the state (9) remains gaussian under the evo-
lution (4). This follows from the observation that the
Schrödinger evolution of ai’s is equivalent to the single-
particle Heisenberg evolution of Hi j. Gaussian form of
the state is also preserved under projection [18].

This property can be used to reduce the many-body
quantities of interest to certain one-particle quantities.
Indeed, any gaussian state (9) can be described by a
matrix in the single-particle Hilbert space defined as

ni j = Tr
(

ρa†
i a j

)
=

[(
eH +1

)−1
]

i j
. (10)

In particular, for a fully filled Fermi sea in both reservoirs
the matrix n is a projector on the subspace of all states
with negative energy, εL < 0, εR < 0. As a projector, the
matrix n satisfies the relation n2 = n.

In what follows, we will need to consider evolution
of the projector n, followed by projection on the left
reservoir L, which is described by

nU = UnU†, M = PLnU PL, (11)

where PL is a projection on the modes in L. The matrix
nU is a projector describing evolved Fermi sea, whereas
the matrix M, which is of main interest for us, is given

by a product of three projectors. Thus generally M is not
a projector.

To illustrate the time evolution of single-particle quan-
tities, such as nU , we recall that in the FCS approach it
is convenient to work in a time representation [43], la-
beling states by times of arrival at the scatterer tx. In
this representation the initial Fermi projection is given
by n(t, t ′) = 1

2πi(t−t ′+i0) I with I a 2×2 identity matrix in
the L, R basis. The evolved state nU is given by

nU (t, t ′) = U(t)n(t, t ′)U†(t ′), U(t) =
[

B(t) A(t)
−A∗(t) B∗(t)

]
.

The evolution operator is diagonal with respect to the ar-
rival time label t, which is precisely why this representa-
tion is so convenient.

The FCS generating function (6) can be expressed in
terms of the single-particle quantities, such as n, nU , PL
and M, in several different ways. The first representation
of this kind, found in Ref.[25], involves a functional
determinant

χ(λ ) = det(1−n+nU†eiλPLUe−iλPL). (12)

This determinant, which must be properly regularized
for infinitely deep Fermi sea [31, 32], can be explicitly
evaluated, yielding the FCS for various driving protocols
of the QPC [36, 37, 38].

Another useful representation of the functional deter-
minant giving χ(λ ) was obtained recently in Ref.[34] (a
similar relation was derived in a related problem of par-
ticle number fluctuations [35, 33]),

χ(λ ) = det
(
(1−M +Meiλ )e−iλ (nPL)U

)
, (13)

where (nPL)U = UnPLU† (see discussion in [18]). Here
M is the Fermi sea in L, evolved by U and projected back
to L by PL (see Eq.(11)). The unitary operator e−iλ (nPL)U

contributes a multiplicative factor of the form eixλ to the
determinant, which may only affect the first cumulant C1
of the FCS generating function, Eq.(8).

The representation (13) is of interest because it re-
veals certain general features of χ(λ ). It is convenient
to introduce the spectral density of M, defined by µ(z) =
Trδ (z−M). Since M is a product of three projectors,
M = PLnU PL, all its eigenvalues lie in the interval 0 ≤
z ≤ 1 (see Refs.[39, 34, 40]). Using the spectral density,
we can rewrite (13) as

log χ(λ ) = ixλ +
∫ 1

0
dzµ(z) log

(
1− z+ zeiλ

)
. (14)

This expression indicates that the FCS always assumes a
generalized binomial form, χ(λ ) ∝ ∏z

(
1− z+ zeiλ )µ(z)

,
with the product taken over the entire spectrum of M.



THE RELATION BETWEEN
ENTANGLEMENT AND FULL

COUNTING STATISTICS

The entanglement generated as a result of evolution of
two Fermi seas coupled through a QPC is characterized
by the von Neumann entropy of the density matrix (4),
S = −TrρL(t1) logρL(t1). As we discussed above, this
matrix is of a gaussian form, Eq.(9). This property can be
used to express entropy through single-particle quantities
(see Refs.[41, 18]), giving

S =−Tr (M logM +(1−M) log(1−M)) (15)

where M is defined in (11), and the trace is taken in the
space of single-particle modes in L.

If the spectral density of M is known, the entropy (15)
can be written as

S =−
∫ 1

0
dzµ(z)(z logz+(1− z) log(1− z)) (16)

At the same time, as we discussed above, the FCS gener-
ating function is also expressed through the spectral den-
sity of M. Furthermore, the spectral density is encoded in
the generating function. This can be seen most easily by
rewriting Eq.(13) as

χ(z) = det
(
(z−M)e−i(nPL)U λ (z)(1− eiλ (z))

)
, (17)

where the parameter λ was changed to z = (1− eiλ )−1.
Thus the resolvent of M is given by the derivative
∂z log χ(z− i0) up to a sum of two terms a0

z + a1
z−1 arising

from the last two factors in (17).
Using this observation the entanglement entropy can

be expressed through the FCS cumulants Cm [18]. Writ-
ing µ(z) in Eq.(16) as 1

π Im∂z log χ(z− i0) and plugging
into it the relation (8), we integrate over z to obtain

S = ∑
m>0

αm

m!
Cm, αm =

{ (2π)m|Bm|, m even
0, m odd , (18)

where Bm are Bernoulli numbers, B2 = 1
6 , B4 = − 1

30 ,
B6 = 1

42 ... These numbers are defined by the generating
function x

ex−1 = ∑∞
n=0 Bn

xn

n! . Interestingly, only even cu-
mulants contribute to the entropy. The first few terms in
the series (18) are:

S =
π2

3
C2 +

π4

15
C4 +

2π6

945
C6 + ... (19)

Asymptotically, |Bn| ≈ 2n!
(2π)n for large even n, which

means that the coefficients in (18) stay bounded,
αm/m!≈ 2 for large m.

It is clear from this derivation that the relations (18)
and (16) are completely general and valid for arbitrary

driving. The formula (18) can be used to determine the
entanglement entropy from the values of FCS moments,
whereas the formula (16) can be used when the spectral
density µ(z) is known.

As an example illustrating these relations, it is instruc-
tive to consider a QPC biased with a DC voltage. The
FCS for a DC-biased QPC with constant transmission
0 ≤ D ≤ 1 is known to have binomial form [25], de-
scribed by the generating function (7),

χ(λ ) =
(

1−D+Deiλ
)N

, N = eV ∆t/h, (20)

where N, given by the product of the bias voltage V and
the measurement time ∆t = t1− t0, is interpreted as the
“number of attempts.” Comparing this expression with
(13), we infer that the spectral density of M in this case is
a delta function, µ(z) = Nδ (z−D). Plugging this result
in the expression (16), we find that entanglement entropy
is generated at a constant rate given by

dS /dt =−(D logD+(1−D) log(1−D))eV/h (21)

Production of entanglement in a DC-biased QPC was
considered in Ref.[42], were the result (21) was obtained.
The rate of entanglement production is zero for D = 0,1
and maximal for D = 1/2.

In this case, using the series (18) turns out to be not
too convenient because of a large number of high-order
cumulants that contribute to the result. This can be seen
most directly in the limit of small D ¿ 1, when the en-
tanglement production rate scales as D log(1/D), while
the cumulants Cm ∼ D. This means that there are about
log(1/D) terms in the series (18) giving contributions of
the same order of magnitude.

CONNECTING AND DISCONNECTING
FERMI SEAS

Here we shall discuss the protocol of driving the QPC
in which it is opened at t0 < t < t1 and closed at t < t0
and t1 < t, as illustrated in Fig.1b. In the simplest case
considered here, the QPC is unbiased, i.e. the right and
left reservoirs remain at equal chemical potentials at all
times. The fluctuations of charge transmitted through the
QPC in this case are gaussian [43],

χ(λ ) = e−
1
2 λ 2C2 , C2 =

1
π2 log

∆t
τ

, (22)

where ∆t = t1− t0 is the time window during which the
QPC was open, and τ is a short-time cutoff of order of
the on/off switching time.

The simplest way to estimate entanglement production
is to use the formula (18). Since for a gaussian distribu-



tion all cumulants are zero except C2, we find

S =
π2

3
C2 =

1
3

log
∆t
τ

. (23)

This result resembles the logarithmic dependence pre-
dicted by conformal field theory, Eq.(3). In fact, since for
free fermions the central charge is c = c̄ = 1, the prefactor
before the logarithm in Eq.(3) is the same as in Eq.(23).

The similarity between the results (23) and (3) for
entanglement entropy is of course not accidental. From
a field-theoretic viewpoint, space and time play the same
role in a conformal field theory. Therefore, analyzing
entanglement using a window of size ` in space should be
equivalent to doing it using a window of size ∆t = `/vF in
time, where vF is Fermi velocity. This is precisely what
the comparison of “time-like” Eq.(23) and “space-like”
Eq.(3) suggests.

One can also understand the relation between the re-
sults (23) and (3) in a more intuitive way, without relying
on a space-time duality. For that, we consider in more
detail the process of mixing of two Fermi seas shown in
Fig.2b. Using different colors (blue and red) to mark par-
ticles in different reservoirs, we observe that after t = t2,
when the reservoirs are disconnected, there is a group of
blue particles in the red Fermi sea. Simultaneously, there
is a group of red particles in the blue Fermi sea.

Assuming, without loss of generality, ballistic dynam-
ics in each of the leads with constant velocity vF , we find
that the blue and red groups of particles occupy spatial
regions of size ` = vF ∆t. Since there is no correlation be-
tween the left and right reservoirs in the initial state of
the system, we conclude that in the final state, shown in
Fig.4, there is no correlation between blue and red parti-
cles either, even if they reside in the same reservoir. This
means that the von Neumann entropy evaluated for one
of the reservoirs, in which both red and blue particles are
present simultaneously, will be the same as the entangle-
ment entropy found for a single Fermi sea with a window
of size ` = vF ∆t.

This argument can in fact be made rigorous using
the method of Ref.[43]. In this paper, concerned with
the FCS of the process shown in Fig.2b, the problem
of fluctuations of charge transmitted through the QPC
during a time interval ∆t was mapped on the problem
of particle number fluctuations in an interval of size
` = vF ∆t. Using the bosonization representation of a free
Fermi gas, the latter fluctuations can be shown to be
gaussian, giving Eq.(22).

The result (23) can be readily generalized to more
complicated protocols of driving the QPC. In particular,
it interesting to consider the QPC switching between the
on and off states multiple times t(1)

0 < t(1)
1 < ... < t(N)

0 <

t(N)
1 . In this case, generalizing the above argument, we

find gaussian charge statistics

χ(λ ) = e−
1
2 λ 2C2 , C2 =

1
2π2 G, (24)

G =
N

∑
i, j=1

log
t(i)1 − t( j)

0

t(i)0 − t( j)
0

+ log
t(i)1 − t( j)

0

t(i)1 − t( j)
1

, (25)

Using the relation (18) with the only nonvanishing con-
tribution due to C2, we obtain the entropy

S =
π2

3
C2 =

1
6

G. (26)

The case of multiple switching provides a time-like real-
ization of the situation studied in Ref.[8], where entan-
glement of a conformal field theory was analyzed using
a system of non-overlapping windows x(1)

0 < x(1)
1 < ... <

x(N)
0 < x(N)

1 . As in the case of single switching, Eq.(3),
the answers for the entanglement entropy coincide after
distances are converted to times via x( j)

0,1 = vF t( j)
0,1 .

Multiple switching of the QPC between the on and off
states, repeated periodically in time, can be used to con-
vert the current fluctuations, described by Eqs.(22),(24),
into the DC shot noise which can be measured by con-
ventional techniques. In Ref.[18], the effective tempera-
ture of such noise was estimated to be about 25mK for
the driving frequency ν = 500MHz, putting it in the ex-
perimentally feasible range.

In view of the possibility of such an experiment, it is
interesting to consider how the above results are changed
if the QPC transmission in the open state is less than one.
This problem can be readily addressed both for single
and multiple switching protocols, since the FCS in this
case has been known [43],

χ(λ ) = e−
λ2∗
4π2 G

, sin
1
2

λ∗ =
√

Dsin
1
2

λ , (27)

with G given by (25) as above, and D < 1 the QPC
transmission coefficient.

Notably, in this case χ(λ ) is non-gaussian. Thus the
simplest way to find the entropy is to use its rela-
tion with the spectral density of M, Eq.(16). The spec-
tral density µ(z) can be evaluated using the resolvent
Tr(1/(z−M− i0)), which is found from χ(λ ), Eq.(27),
as discussed above. This gives a peculiar function [18]
which vanishes inside the interval

z1 < z < z2, z1,2 =
1
2

(
1∓√1−D

)
,

while outside this interval, at 0 < z < z1 and z2 < z < 1,
it is given by

µ(z) =
G

2π2
|1−2z|√D

z(1− z)
√

(z− z1)(z− z2)
. (28)



The entropy, found from (16), exhibits a logarithmic
dependence on the times t(i)0,1 identical to (25); the only
change is a D-dependent prefactor.

The behavior of the factor F = S (D)/S (1) describ-
ing entropy reduction due to imperfect transmission in
the QPC was analyzed in Ref.[18]. It was found that,
unless D is very small, the reduction in entropy can
be attributed mostly to the change in the second cumu-
lant, C2 = D

2π2 G, with the contribution from higher cu-
mulants being relatively small. Thus even for imperfect
QPC transmission, the DC shot noise generated by QPC
switching gives a reasonably good estimate of the entan-
glement entropy production.

CONCLUSIONS

There are several ways in which the relation between
many-body entanglement and the Full Counting Statis-
tics (FCS) description of quantum transport comes as
noteworthy and surprising. First, it provides an interest-
ing new application for the FCS approach. Using the
framework outlined above, many results from the FCS
literature can be reinterpreted and used to study entangle-
ment production in a variety of regimes of experimental
interest.

Second, the FCS approach offers new insight into the
nature of many-body entanglement in driven quantum
systems. In particular, two different kinds of entangle-
ment, called restricted and unrestricted, are distinguished
in quantum information theory [42]. This distinction
refers to our ability to detect entanglement by means of
local measurements, as required in various teleportation
and cryptography protocols. Entanglement production in
a system such as the QPC, opened and closed multiple
times as discussed above, results from particle exchange
between two Fermi seas. However, since particle num-
ber is a conserved quantity, some of the produced entan-
glement may be inaccessible to local measurements, and
thus unuseful from a quantum information standpoint.

How large is the unrestricted (“useful”) entanglement?
This question can be addressed by generalizing the FCS-
based approach, as discussed in detail in Ref.[44]. It
turns out that for realistic driving protocols, such as those
analyzed above, nearly all entanglement is unrestricted.
Specifically, when the number of particles transferred
through the QPC becomes large, the restricted entangle-
ment entropy scales as logS , where S À 1 is the to-
tal entanglement entropy. Thus only a small fraction of
entanglement is degraded to the restricted form due to
particle conservation.

Finally, the relation between entanglement and FCS
opens a way to perform direct measurement of entan-
glement entropy by detecting fluctuations of electric cur-

rent in a driven system. In particular, by using the QPC
switching periodically between the on and off states, and
utilizing space-time duality of one-dimensional systems,
the relation between entanglement production and noise
can be used to test the seminal S = 1

3 logL prediction of
conformal field theory [5]. More generally, this relation
offers a method for theoretical and experimental investi-
gation into the nature of many-body entanglement, and
in particular, of its build up in non-equilibrium quantum
systems.
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FIGURE 2. (a) Quantum point contact (QPC), an electron beam-splitter with tunable transmission and reflection (from Ref.[19]).
Conductance G of a QPC exhibits quantized steps, observed by varying the gate voltage Vg. As Vg becomes more negative, the
transport channels in the QPC open up one by one, with transmission Di in channel i increasing from 0 to 1 between consecutive
steps i and i + 1. (b) Schematic of two Fermi seas which are connected via a QPC during the time interval t0 < t < t1, and then
disconnected (from Ref.[18]). Electron transport, taking place at t0 < t < t1 makes electrons delocalized among the two leads,
generating entanglement and current fluctuations. There is a “space-time” duality between this situation and the conventional
approach [3, 4, 5], in which many-body correlations are analyzed using a finite region in space.
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FIGURE 3. Measurement of high-order cumulants of elec-
tron shot noise in a tunnel junction (from Ref.[27]). Fluctua-
tions of electric current, integrated over a short time interval
∆t = 5ns and histogrammed, give the probability distribution
of transmitted charge (insets). The mean, the variance and the
skewness of this distribution are used to obtain the cumulants
of FCS, C1, C2 and C3. The noise power S2, obtained from
C2, agrees with the expectation for Poisson statistics, C2 = C1
(black line). The measured value of the 3rd cumulant is also
close to the poissonian value, C3 ≈ C1 (not shown, see Fig.3
in Ref.[27]). Higher-order cumulants are challenging to obtain
because the histogram of transmitted charge is nearly gaussian
for nanosecond sampling times and currents of a few nA, as
expected from the central limit theorem.

FIGURE 4. Entanglement of two Fermi seas generated by
connecting and disconnecting them via a QPC during time
interval ∆t can be interpreted as entanglement in a stationary
Fermi sea probed with a window of size ` = vF ∆t.


