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Abstract. The creation of a quantum Universe is described by a density matrix which yields an ensemble of universes with
the cosmological constant limited to a bounded range Λmin ≤Λ≤Λmax. The domain Λ < Λmin is ruled out by a cosmological
bootstrap requirement (the self-consistent back reaction of hot matter). The upper cutoff results from the quantum effects
of vacuum energy and the conformal anomaly mediated by a special ghost-avoidance renormalization. The cutoff Λmax
establishes a new quantum scale – the accumulation point of an infinite sequence of garland-type instantons. The Euclidean
path integral formalism used for the construction of the fundamental density matrix for a mixed state of the Universe is
justified by proving its correspondence to the microcanonical ensemble in quantum cosmology. The cosmological evolution
starting with these initial conditions also have some new features: the stage of cosmic acceleration can be followed by a big
boost singularity – a rapid growth up to infinity of the scale factor acceleration parameter. From the developed approach it
follows that the notion of the density matrix plays a more fundamental role than that was traditionally prescribed to it.
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INTRODUCTION

Many years ago when speaking to his students L.D. Lan-
dau used to say, according to I.M. Khalatnikov’s rem-
iniscences, that the future physical theory should incor-
porate not only equations of motion but also initial condi-
tions for them [1]. It is difficult to imagine how preferred
initial conditions could be prescribed to an equation of
motion in the framework of classical physics. The same
could be said about the non-relativistic quantum me-
chanics or about quantum field theory in the Minkowski
spacetime. The only theory where the idea of natural
initial conditions was realized is quantum cosmology,
the branch of quantum theory treating the Universe as
a unique quantum object described by its quantum state.
The basic equation of quantum cosmology - the Wheeler-
DeWitt equation was formulated in the sixties [2]. How-
ever, certain prescriptions for the wave function of the
universe, satisfying this equation were suggested only
in the early eighties in papers [3, 4, 5, 6, 7]. In papers
mentioned above the two related approaches were used:
the analogy with the tunneling processes in quantum me-
chanics [4] and the apparatus of the Euclidean field the-
ory [3]. In both cases the phenomenon of the so called
“quantum birth of the universe from nothing” was em-
ployed. Both approaches used the instanton solutions of
the Euclidean Einstein equations, however their physi-
cal predictions were different because the Euclidean ac-
tion entered with different signs the exponential of the
wave function of the universe, calculated in the semi-
classical approximation. Namely, the Hartle-Hawking or

“no-boundary” wave function of the universe [3] which
behaves in the lowest order of the WKB approxima-
tion as ψNB ∼ exp(−Γ), where Γ is the Euclidean ac-
tion on the underlying instanton, predicts the quantum
birth of a universe with a very large (infinite) initial ra-
dius, which looks quite counter-intuitive. The tunneling
or Vilenkin wave function of the universe [4] behaves
as ψT ∼ exp(+Γ) and predicts the birth of a universe
with an infinitely small radius. Besides, both of these
functions are non-normalizable and it is hardly possible
to prescribe to them the traditional quantum-mechanical
probabilistic interpretation.

Considering solutions of the Wheeler-DeWitt equation
in the one-loop approximation, one can achieve (impos-
ing some constraints on the particle content of the the-
ory) the normalizability of the wave function of the uni-
verse in both the tunneling and no-boundary prescrip-
tions [8]. Moreover, for the tunneling wave function of
the universe one can predict a peak of the probability of
the quantum birth of the universe with reasonable initial
parameters [9].

However, the traditional approach to quantum cosmol-
ogy limited to the consideration of only pure quantum
states and associated with them instantons looks too re-
strictive. It appears that relaxing the requirement of the
“purity” of possible quantum states of the universe and
taking into account the possibility of existence of the
gravitational instantons with more complicated geome-
tries than those considered in the above works on quan-
tum cosmology, one can obtain some, at first glance, un-
expected results. In our papers [10, 11] we have general-



ized the traditional scheme of quantum cosmology. The
main goals of our approach were the following:

1. Description of the birth of the universe from nothing
in a mixed state and the use of the density matrix
instead of the wave function of the universe.

2. Predicition of initial conditions for the cosmological
evolution, which we call “cosmological landscape”
in analogy with a very popular string landscape
[12].

3. Elimination of “infrared catastrophe” (an infinitely
large probablity of the birth of the universe of an in-
finitely large size) in the Hartle-Hawking prescrip-
tion.

4. Establishing connections with string theory.

The tools which we have used were

1. Quantum theory of tunneling : Euclidean quantum
gravity.

2. Quantum field theory: renormalization in curved
spacetime; effective action formalism.

3. The account of non-local effects due to back reac-
tion of the conformal anomaly of quantum fields
and their radiation.

Our main results can be formulated as follows:

1. The closed system of equations describing the quan-
tum birth of the universe is derived: the general-
ized Friedmann equation with the quantum radia-
tion source and the “bootstrap” equation for the lat-
ter.

2. The solution of these equations gives the families
of acceptable parameters, characterizing initial con-
ditions for cosmological evolution - “cosmological
landscape”.

3. The problem of “infrared catastrophe" in the Hartle-
Hawking prescription is resolved.

4. The scenarios of the future evolution of the Uni-
verse are studied.

DENSITY MATRIX, RADIATION AND
INSTANTONS

The idea to consider the density matrix of the universe
instead of the wave function of the universe was put for-
ward in [13] where it was also noticed that such a density
matrix is based on an instanton with two disjoint bound-
aries (see Fig.1). The density matrix describes a mixed
state which might account for the presence of radiation
[14]. For the pure quantum state [3] the instanton bridge
between Σ and Σ′ breaks down (see Fig.2). However, the
radiation stress tensor prevents these half instantons from
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FIGURE 1. Picture of instanton representing the density ma-
trix. Dashed lines depict the Lorentzian Universe nucleating
from the instanton at the minimal surfaces Σ and Σ′.

Σ Σ’

FIGURE 2. Density matrix of the pure Hartle-Hawking state
represented by the union of two vacuum instantons.

closure. Indeed, the Euclidean Friedmann equation for a
closed universe with the metric

ds2 = N2(τ)dτ2 +a2(τ)d2Ω(3) (1)

in the presence of a cosmological constant Λ = 3H2 and
radiation characterized by a constant C

ȧ2

a2 =
1
a2 −H2− C

a4 (2)

has the solution a = 1√
2H

√
1− (1−4CH2)1/2 cos2Hτ

with two turning points, neither of them vanishing, a± =
1√
2H

√
1± (1−4CH2)1/2, 4H2C ≤ 1.

The relevant density matrix is the path integral

ρ [ϕ,ϕ ′ ] = eΓ
∫

g,φ |Σ,Σ′ =(ϕ ,ϕ ′)

D[g,φ ] exp
(−SE[g,φ ]

)
. (3)

with the partition function e−Γ which follows from inte-
grating out the field ϕ in the coincidence ϕ ′ = ϕ corre-
sponding to the identification of Σ′ and Σ, the underlying
instanton acquiring the toroidal topology (see Fig.3).

Σ ΣΣ

Σ

’

FIGURE 3. Calculation of the partition function represented
by compactification of the instanton to a torus with periodically
identified Euclidean time.



CONFORMAL ANOMALY AND GHOSTS

The metric of the instanton introduced above

ds2 = a2(η)(dη2 +d2Ω(3)), (4)

is conformally equivalent to the metric of the Einstein
static universe:

ds̄2 = dη2 +d2Ω(3), (5)

where η is the conformal time parameter. We shall con-
sider conformally invariant fields. As is well known, the
quantum effective action for such fields has a conformal
anomaly first studied in cosmology in [15, 16]. It has the
form

gµν
δΓ1−loop

δgµν
=

1
4(4π)2 g1/2

(
α¤R+βE + γC2

µναβ

)
,

(6)
where E = R2

µναγ − 4R2
µν + R2 and ¤ is the four-

dimensional Laplacian. This anomaly, when integrated
functionally along the orbit of the conformal group, gives
the relation between the actions on conformally related
backgrounds [17].

Γ1−loop[g ] = Γ1−loop[ ḡ ]+δΓ[g, ḡ ], (7)

gµν(x) = eσ(x)ḡµν(x), (8)

where

δΓ[g, ḡ ] =
1

2(4π)2

∫
d4xḡ1/2

{
1
2

[
γ C̄2

µναβ

+β
(

Ē− 2
3

¤̄R̄
)]

σ

+
β
2

[
(¤̄σ)2 +

2
3

R̄(∇̄µ σ)2
]}

− 1
2(4π)2

( α
12

+
β
18

)

×
∫

d4x
(

g1/2R2(g)− ḡ1/2R2(ḡ)
)
. (9)

One can show that the higher-derivative in σ terms
are all proportional to the coefficient α . The α-term
can be arbitrarily changed by adding a local counterterm
∼ g1/2R2. We fix this local renormalization ambiguity
by an additional criterion of the absence of ghosts. The
conformal contribution to the renormalized action on the
minisuperspace background equals

δΓ[g, ḡ ]≡ ΓR[g ]−ΓR[ ḡ ]

= m2
P B

∫
dτ

(
ȧ2

a
− 1

6
ȧ4

a

)
, (10)

m2
P B =

3
4

β , (11)

with the constant m2
P B which for scalars, two-component

spinors and vectors equals respectively 1/240, 11/480
and 31/120.

EFFECTIVE ACTION ON A STATIC
EINSTEIN INSTANTON

For a conformal scalar field

S[ ḡ,φ ] =
1
2 ∑

ω

∫ η

0
dη ′

((dφω

dη ′
)2

+ω2 φ 2
ω

)
, (12)

where ω = n, n = 0,1,2, ..., labels a set of eigenmodes
and eigenvalues of the Laplacian on a unit 3-sphere. Thus

e−Γ1−loop[ ḡ ]

=
∫

∏
ω

dϕω

∫

φω (η)=φω (0)=ϕω

D[φ ] exp
(−S[ ḡ,φ ]

)

= const ∏
ω

(
sinh

ωη
2

)−1
, (13)

and the effective action equals the sum of contributions
of the vacuum energy E0 and free energy F(η) with the
inverse temperature played by η — the circumference of
the toroidal instanton in units of a conformal time,

Γ1−loop[ ḡ ] = ∑
ω

[
η

ω
2

+ ln
(
1− e−ωη)]

= m2
P E0 η +F(η), (14)

m2
P E0 = ∑

ω

ω
2

=
∞

∑
n=1

n3

2
, (15)

F(η) = ∑
ω

ln
(
1− e−ωη)

(16)

=
∞

∑
n=1

n2 ln
(
1− e−nη)

. (17)

Similar expressions hold for other conformally invari-
ant fields of higher spins. In particular, the vacuum en-
ergy (an analog of the Casimir energy) on Einstein static
spacetime is

m2
P E0 =

1
960

×




4
17
88

(18)

respectively for scalar, spinor and vector fields.
We should take into account the effect of the fi-

nite ghost-avoidance renormalization denoted below by a
subscript R, which results in the replacement of E0 above
by a new parameter C0:

ΓR[ ḡ ] = m2
P C0 η0 +F(η), (19)

m2
P C0 = m2

P E0 +
3

16
α. (20)

A direct observation indicates the following universal-
ity relation for all conformal fields of low spins

m2
P C0 =

1
2

m2
P B. (21)



EFFECTIVE FRIEDMANN AND
BOOTSTRAP EQUATIONS

Now we can write down the effective Friedmann equa-
tion governing the Euclidean evolution of the universe.
First of all, the full conformal time on the instanton is

η = 2
∫ τ+

τ−

dτ N(τ)
a(τ)

, (22)

where τ± label the turning points for a(τ) – its minimal
and maximal values.

The effective action is (m2
P ≡ 3/4πG)

Γ[a(τ),N(τ) ]

= 2m2
P

∫ τ+

τ−
dτ

(
−aȧ2

N
−Na+NH2a3

)

+2Bm2
P

∫ τ+

τ−
dτ

(
ȧ2

Na
− 1

6
ȧ4

N3a

)

+F
(

2
∫ τ+

τ−

dτ N
a

)
+Bm2

P

∫ τ+

τ−

dτ N
a

, (23)

and the effective Friedmann equation reads

δΓ
δN

= 2m2
P

(
aȧ2

N2 −a+H2a3
)

+2Bm2
P

(
− ȧ2

N2a
+

1
2

ȧ4

N4a

)

+
2
a

(
dF(η)

dη
+

B
2

m2
P

)
= 0. (24)

In the gauge N = 1 this equation takes form

ȧ2

a2 +B
(

1
2

ȧ4

a4 −
ȧ2

a4

)
=

1
a2 −H2− C

a4 , (25)

where the amount of radiation constant C is given by the
bootstrap equation

m2
PC = m2

P
B
2

+
dF(η)

dη
≡ B

2
m2

P +∑
ω

ω
eωη −1

. (26)

The Friedmann equation can be rewritten as

ȧ2 =

√
(a2−B)2

B2 +
2H2

B
(a2

+−a2)(a2−a2−)

− (a2−B)
B

(27)

and has the same two turning points a± as in the classical
case provided

a2
− ≥ B. (28)

This requirement is equivalent to

C ≥ B−B2H2, BH2 ≤ 1
2
. (29)

Together with

CH2 ≤ 1
4
,

the admissible domain for instantons reduces to the
curvilinear wedge below the hyperbola and above the
straight line to the left of the critical point (see Figure
4)

C =
B
2

, H2 =
1

2B
.

For a scalar field the numerical analysis of the Fried-
mann and bootstrap equations shows that the one-
parameter family of instantons interpolates between the
point on the lower line boundary with the parameters

H2 ≈ 2.997m2
P, C ≈ 0.004m−2

P , Γ0 ≈−0.1559, (30)

and the point on the upper hyperbolic boundary

H2 ≈ 12.968m2
P, C ≈ 0.0193m−2

P , Γ0 ≈−0.0883. (31)

The last instanton describes the creation of a static Ein-
stein Universe of the constant size

a = a+ = a− = 1/(
√

2H)

with the hot gas of a conformally-invariant scalar field
particles in the equilibrium state with the temperature

T =
1

aη
=

H

π
√

1−2BH2
. (32)

INFRARED CATASTROPHE IS
ELIMINATED.

The suggested approach allows to resolve the problem
of the so-called infrared catastrophe for the no-boundary
state of the Universe based on the Hartle-Hawking in-
stanton. This problem is related to the fact that the Eu-
clidean action on this instanton is negative and inverse
proportional to the value of the effective cosmological
constant. This means that the probability of the universe
creation with an infinitely big size is infinitely high. We
shall show now that the conformal anomaly effect allows
one to avoid this counter-intuitive conclusion.

Indeed, outside of the admissible domain for the in-
stantons with two turning points, obtained above, one can
also construct instantons with one turning point which
smoothly close at a− = 0 with ȧ(τ−) = 1. Such instan-
tons correspond to the Hartle-Hawking pure quantum
state. However, in this case the on-shell effective action,
which reads for the set of solutions obtained above as

Γ0 = F(η)−η
dF(η)

dη

+4m2
P

∫ a+

a−

daȧ
a

(
B−a2− Bȧ2

3

)
, (33)
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FIGURE 4. The instanton domain in the (H2,C)-plane is located between bold segments of the upper hyperbolic boundary and
lower straight line boundary. The first one-parameter family of instantons is labeled by k = 1. Families of garlands are qualitatively
shown for k = 2,3,4. (1/2B,B/2) is the critical point of accumulation of the infinite sequence of garland families.

diverges to plus infinity. Indeed, for a− = 0 and ȧ− = 1

η =
∫ a+

0

da
ȧa

= ∞, F(∞) = F ′(∞) = 0, (34)

and hence the effective Euclidean action diverges at the
lower limit to +∞. Thus,

Γ0 = +∞, exp(−Γ0) = 0,

and this fact completely rules out all pure-state instan-
tons, and only mixed quantum states of the universe, de-
scribed by the cosmological density matrix appear to be
admissible.

INSTANTON GARLANDS

One should consider also the multiple instanton configu-
rations, which could be called “Instanton garlands” (see
Figure 5). The total conformal time for such an instanton
garland is

η(k)
0 = 2k

∫ τ+

τ−

dτ
a

= 2k
∫ a+

a−

da
aȧ

, (35)

where k is the number of simple instanton folds in a
garland.

Numerical analysis for k = 2 shows the existence of
the one-parameter family of instantons similar to the case

of k = 1. It interpolates between the point on the lower
boundary of (C,H2)-plane

H2
(2) ≈ 45.89m2

P, C(2) ≈ 0.0034m−2
P , Γ(2)

0 ≈−0.0113,

(36)
and the point on the upper (hyperbolic) boundary

H2
(2) ≈ 61.12m2

P, C(2) ≈ 0.0041m−2
P , Γ(2)

0 ≈−0.0145.

(37)
Such families exist for all k,1 ≤ k ≤ ∞, and their

infinite sequence is saturated at the critical point,

η(k)
0 ' lnk2 (38)

H2
(k) '

1
2B

(
1− ln2 k2

2k2π2

)
, (39)

C(k) '
B
2

(
1+

ln2 k2

2k2π2

)
, (40)

Γ(k)
0 '−m2

PB
ln3 k2

4k2π2 . (41)

The length of instanton families decreases as 1/k4. Infi-
nite garlands (k → ∞) do not dominate the instanton dis-
tribution because their action grows with k rather than
decreases to −∞.

A growing spin of a conformal particle decreases the
instanton size and makes its probability weight higher.



FIGURE 5. Segment of the garland consisting of three folds
of a simple instanton glued at surfaces of a maximal scale
factor.

For N fields

C → NC, (42)
B→ NB, (43)
η0 → η0, (44)
F(η0)→ NF(η0), (45)

H2 → H2

N
. (46)

The initial size of the universe grows with the growing
spin and number of fields.

WHERE EUCLIDEAN QUANTUM
GRAVITY AND COSMOLOGY COMES

FROM ?

In the preceding sections we have described a new ap-
proach to the problem of initial conditions in cosmology
based on the use of the combination of two ideas: the
density matrix formalism and Euclidean quantum grav-
ity. A natural question arises: where Euclidean quan-
tum gravity comes from? The answer can be formulated
briefly as follows: from the Lorentzian quantum gravity
(LQG) [18]. Namely, the density matrix of the Universe
for the microcanonical ensemble in Lorentzian quan-
tum cosmology of spatially closed universes describes
an equipartition in the physical phase space of the the-
ory, but in terms of the observable spacetime geome-
try this ensemble is peaked about a set of cosmological
instantons (solutions of the Euclidean quantum cosmol-
ogy) limited to a bounded range of the cosmological con-
stant. These instantons obtained above as fundamental in
Euclidean quantum gravity framework, in fact, turn out
to be the saddle points of the LQG path integral, belong-
ing to the imaginary axis in the complex plane of the
Lorentzian signature lapse function [18].

COSMOLOGICAL EVOLUTION AND
BIG BOOST SINGULARITY

Now let us consider the cosmological evolution of the
unverse starting from the initial conditions described
above. Making the transition from the Euclidean time to

the Lorentzian one, τ = it, we can write the modified
Lorentzian Friedmann equation as [19]

ȧ2

a2 +
1
a2 =

1
B

{
1−

√
1− 16πG

3
Bε

}
, (47)

ε =
3

8πG

(
H2 +

C

a4

)
, (48)

C ≡C− B
2

, (49)

where ε is a total gravitating matter density in the model
(including at later stages also the contribution of particles
created during inflationary expansion and thermalized at
the inflation exit). A remarkable feature of this equation
is that the Casimir energy is totally screened here and
only the thermal radiation characterized by C weighs.

If one wants to compare the evolution described by Eq.
(49) with the real evoltuion of the universe, first of all it
is necessary to have a realistic value for an effective cos-
mological constant Λ = 3H2. The only way to achieve
this goal is to increase the number of conformal fields
and the corresponding parameter B, (11), of the confor-
mal anomaly (6). The mechanisms for growing number
of the conformal fields exist in some string inspired cos-
mological models with extra dimensions [18]. If some
of these mechanisms work we can encounter an interest-
ing phenomenon: if the B grows with a faster than the
rate of decrease of the energy density ε one encounters
a new type of the cosmological singularity - Big Boost.
This singularity is characterized by finite values of the
cosmological radius aBB and of its time derivative ȧBB,
while the second time variable ä has an infinite positive
value. The universe reaches this singularity at some finite
moment of cosmic time tBB:

a(tBB) = aBB < ∞, (50)
ȧ(tBB) = ȧBB < ∞, (51)
lim

t→tBB
ä(t) = ∞. (52)

It is interesting to compare this singularity with other
types of cosmological singularities arising in isotropic
and homogeneous Friedmann cosmological models. The
most known and well studied one is the Big Bang (or
Big Crunch) singularity which is characterized by a van-
ishing scale factor at the initial or final moments of the
cosmological evolution:

a(tIn,Fin) = 0. (53)

Such a singularity arises, for example, in Friedmann
universes filled by dust, radiation and other types of
“standard” matter with the equation of state parameter
w = p/ρ >−1/3.

During the last decade another type of singularity has
acquired some popularity. This is the so called Big Rip



singularity [20, 21], when the radius of the universe,
its first time derivative and the Hubble variable tend to
infinity at some finite moment of time:

lim
t→tBR

a(t) = ∞, (54)

lim
t→tBR

ȧ(t) = ∞, (55)

lim
t→tBR

ȧ(t)
a(t)

= ∞. (56)

Such a singularity arises in the models where the phan-
tom dark energy (i.e. dark energy for which the equation
of state parameter w <−1) is present. Some modern cos-
mological observations give certain indications in favour
of models, including phantom dark energy.

Another type of cosmological singularity was found
in some cosmological models based on tachyon (Born-
Infeld-type) field [22]. Such a singularity is a result of a
decelerating evolution of the universe which culminates
at some finite moment of time tBBr when the cosmolog-
ical radius has some finite value, its first time derivative
and the Hubble variable are equal to zero, while the sec-
ond time derivative of the cosmological radius tends to
−∞:

a(tBBr) = aBBr < ∞, (57)
ȧ(tBBr) = 0, (58)
lim

t→tBBr
ä(t) =−∞. (59)

This type of cosmological singularity arises, for exam-
ple in a simple model, representing a flat Friedmann
universe filled with the “anti-Chaplygin gas” [22, 23],
whose equation of state is p = A/ρ (where A ia a positive
constant) in analogy with the Chaplygin gas cosmologi-
cal model [24], whose equation of state is p =−A/ρ and
which describes a unified model of dark energy and dark
matter. However, when one considers a richer tachyon
model [22] the situation looks more interesting. Indeed,
the cosmic deceleration era in this model can follow a
long period of accelerated expansion. Thus, one cannot
exclude, that after the period of the accelerated quasi-de
Sitter expansion which we experience now, a quite new
phase of cosmological evolution will come.

CONCLUSION: INITIAL CONDITIONS,
SINGULARITIES, DENSITY MATRIX

AND LANDAU’S LEGACY

In conclusion we would like to make some remarks
concerning connections between topics touched in the
reported series of works [10, 11, 18, 19] and the scientific
legacy of L.D. Landau.

First, let us remember that the main goal of works in
quantum cosmology is the construction of the quantum

state of the universe, which can predict initial conditions
for its subsequent classical evolution. As we have already
noticed in the Introduction, it was L.D. Landau who
pointed out that a consistent physical theory should not
only present the equations of motion for the system
under consideration, but also be able to predict initial
conditions for these equations [1].

Second, considering some string-inspired cosmolog-
ical models, we have found a new type of the cosmo-
logical singularity - the Big Boost singularity, character-
ized by an infinite value of the cosmic acceleration [19].
The importance of the problem of cosmological singular-
ity was also underlined by Landau in the fifties on equal
footing with such topics as the theory of phase transitions
and superconductivity [1]. Development of both the the-
oretical and observational cosmology has confirmed the
correctness of his opinion. Indeed, the theoretical study
of the anisotropic universe in the vicinity of the Big Bang
(Crunch) moment has resulted in the discovery of the
phenomenon of the oscillatory approach to the cosmo-
logical singularity [25, 26, 27], while the recent observa-
tions of the cosmic acceleration phenomenon have stim-
ulated study of other types of cosmological singularities
(for a recent review see e.g. [28]).

Finally, the results of the reported works open a new
insight into the role of a density matrix in quantum
theory. Let us recollect the main features of the density
matrix of the universe, which we advocate:

1. It was shown that the density matrix, correspond-
ing to mixed quantum states is a fundamental ob-
ject, not less fundamental than the wave function,
describing pure quantum states.

2. Appearance of the density matrix is not necessarily
a result of our ignorance or an artifact of tracing out
a part of the degrees of freedom.

3. The universe in the framework of quantum cosmol-
ogy can be born in a mixed and not in a pure quan-
tum state.

This means that the density matrix plays a more fun-
damental role than that which was prescribed to it until
now.

Here we would like to say that it was L.D. Landau
who has introduced the notion of the density matrix
in 1927 in the paper “Das Dämpfungsproblem in der
Wellenmechanics”, Z. Physik, 45 (1927) 430 in parallel
with F. Bloch and J. von Neumann [30]. This happened
at the dawn of quantum mechanics and all three of them
were very young. Landau was the youngest of them – he
was 19 year old.

The existence of mixed quantum states described by
the density matrix was and is considered as a result of
lack of information, which is not connected with the
basic laws of quantum theory. The probability weights



present in a density matrix are the numbers reflecting
traditional statistic probabilities which exist already in
the framework of the classical theory. These probability
weights which are given by eigenvalues of the density
matrix are the relative weights of different pure quantum
states constituting a mixed quantum state. Thus, these
probability weights play the role similar to one played by
the probability distribution function on the phase space
in the classical statistical mechanics. Considering pure
classical states, where all the coordinates and momenta
have determined values, one does not encounter the prob-
abilities. In the case of quantum theory considering pure
quantum states, one eliminates the statistical probabili-
ties, while quantum mechanical probabilities are always
present. Hence, the statistical probabilities are usually
considered to be less fundamental than the quantum me-
chanical ones. Moreover, one normally thinks that the
universe is born and, hence, always exists in the pure
quantum state, while its subsystems are usually repre-
sented by density matrices due to quantum entanglement
effects. The results of the presented series of works show
that, at least in some cosmological models, the universe
as a whole always exists in the mixed quantum state rep-
resented by the cosmological density matrix, while the
probability of its birth in the pure quantum state (Hartle-
Hawking no-boundary state) is equal to zero. That means
that the statistical or “thermodynamical” probability is in
a way no less fundamental than the quantum mechanical
probability, because, even in principle, we cannot get rid
of it, choosing to work only with pure states. Thus, the
density matrix introduced by L.D. Landau, F. Bloch and
J. von Neumann in 1927, is a more fundamental object
than these authors could have imagined at that time.
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