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Abstract. A classical system cannot escape out of a metastable state at zero temperature. However, a composite system made
from both classical and quantum degrees of freedom may drag itself out of the metastable state by a sequential process.
The sequence starts with the tunneling of the quantum component which then triggers a distortion of the trapping potential
holding the classical part. Provided this distortion is large enough to turn the metastable state into an unstable one, the classical
component can escape. This process reminds of the famous baron Münchhausen who told the story of rescuing himself from
sinking in a swamp by pulling himself up by his own hair—we thus term this decay the ‘Münchhausen effect’. We show
that such a composite system can be conveniently studied and implemented in a dc-SQUID featuring asymmetric dynamical
parameters. We determine the dynamical phase diagram of this system for various choices of junction parameters and system
preparations.
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INTRODUCTION

Consider a very heavy particle (M → ∞) trapped in a
metastable potential minimum at temperature T = 0. Can
it escape? The answer seems to be obvious: thermal acti-
vation is forbidden, since we are at zero temperature and
tunneling is not possible either, because the particle is
heavy. Matters are not that simple, however, if this heavy
object is a composite one, with a quantum (light) degree
of freedom coupled to the classical (heavy) one. Then the
light part may tunnel out of the metastable minimum and
exert a pulling force on the classical part. Once the lat-
ter is large enough to suppress the trapping barrier, the
classical object is able to leave the potential well—hence
a classical object may escape from a metastable state if
helped by a coupled quantum degree of freedom. Two
interacting particles with coordinates x1,x2 in 1D can be
viewed as one particle in a 2D potential V (x1,x2). Here
V (x1,x2) takes into account both the external potential
and the interaction between the particles. Then the heavy
and light particles map to an anisotropic mass in this
problem. The Münchhausen decay corresponds to tun-
neling “along the light axis” and sliding thereafter along
the heavy one. It is clear, that there is no problem to
imagine such a 2D potential.

The above situation can be implemented experimen-
tally in a dynamically asymmetric dc-SQUID; it is this
specific realization which we will study in detail in this
paper, see Fig. 1. The dynamical degrees of freedom in
the dc-SQUID are the gauge-invariant phase differences
ϕi, i = 1,2, across the two Josephson junctions. The po-
tential energy (of a single Josephson junction) is given

by Vi = EJ(1− cosϕi), i = 1,2, involving the Josephson
energy EJ = Φ0Ic/2πc (with the flux unit Φ0 = hc/2e
and the critical current Ic of the junction). The kinetic en-
ergy reads Ti = (h̄/2e)2Ciϕ̇2

i /2, where the capacitances
Ci assume the role of effective masses. Hence, a SQUID
featuring two Josephson junctions with equal critical cur-
rent Ic but adequately chosen and strongly asymmetric
capacitances, one large and one small (C1 ÀC2), effec-
tively provides us with a classical and a quantum degree
of freedom.
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FIGURE 1. Schematics of the dynamically asymmetric dc-
SQUID. Two Josephson junctions with equal critical current
Ic but strongly asymmetric capacitances (C1 À C2) and resis-
tances Ri are integrated in a biased (current I) superconducting
loop with symmetric inductance L.

The decay process of the biased dynamically asym-
metric SQUID proceeds in the following manner: The
bias I, leading to a term ∝ −I(ϕ1 + ϕ2) in the poten-
tial, turns a stable state of the washboard potential into
a metastable one. As junction 1 features a large capaci-
tance, we assume its dynamics to be strictly classical. If



the bias I is large enough, a (imaginary time) decay pro-
cess involving only the quantum junction (at constant ϕ1)
is enabled. This phase slip leads to the entry of magnetic
flux into the ring. Given the inductive coupling ∝ 1/L
(inductance L), the current through the classical junction
is enhanced and it may eventually become overcritical,
thus decaying via a classical real time trajectory.

SETUP

We start from the capacitively shunted junction model
(CSJ), where the dc-SQUID, biased with a current I, is
described by the Lagrangian

L =
2

∑
i=1

[(
Φ0

2πc

)2 Ci

2
ϕ̇2

i −EJ(1− cosϕi)
]

+
Φ0I
2πc

ϕ1 +ϕ2

2
−

(
Φ0

2πc

)2 (ϕ1−ϕ2)2

2L
; (1)

here, we have assumed that the inductance L of the
SQUID is symmetrically distributed. The Lagrangian L
generates the equations of motion

miϕ̈i +ηiϕ̇i =−∂ϕi v(ϕ1,ϕ2), (2)

with the ‘masses’ mi = Φ0Ci/2πcIc and where we have
added the dissipative terms ηiϕ̇i with the damping pa-
rameters ηi = Φ0/2πcIcRi ∝ 1/Ri, Ri the normal resis-
tances of the junctions; the potential (illustrated in Fig.
2) is given by

v(ϕ1,ϕ2) = 2− cosϕ1− cosϕ2

− j(ϕ1 +ϕ2)+
k
2
(ϕ1−ϕ2)2, (3)

with the dimensionless current j = I/2Ic, the coupling
constant k = Φ0/2πcIcL and where energies are mea-
sured in units of EJ .

Residing in a symmetric (ϕ1 = ϕ2 = arcsin i)
metastable state of the potential v(ϕ1,ϕ2) at finite
bias current i, the classical version of the system de-
scribed through Eq. (2) cannot decay at zero temperature.
Here, we are investigating the case where junction one,
featuring a large capacitance C1, is assumed to behave
strictly classical, whereas the dynamics of junction 2 is
characterized by large quantum fluctuations. This can be
achieved through a suitable choice of parameters, i.e., a
small capacitance C2, while keeping EJ & EC2 = e2/2C2
such that we remain in a quasi-classical regime.

In the system under consideration, different scenarios
can arise depending on the strength of the dissipation as
quantified by the dimensionless damping parameter

αi = (2RiCiωpi)−1, i = 1,2, (4)
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FIGURE 2. Illustration of the decay sequence of the dy-
namically asymmetric SQUID ( j = 0.5, k = 0.04). The initial
metastable well is unstable w.r.t. the macroscopic quantum tun-
neling of the small junction 2. A continuous sequence of phase
slips takes the system to a state which is classically unstable.
In the following, the (classical) relaxation of the large junction
1 and the quantum decay of junction 2 alternate and lead to a
finite voltage state of the SQUID.

where, at j = 0, the plasma frequency h̄ωp j =
(8EJECi)1/2. The simplest case is the overdamped
situation α1,α2 > 1, where the dynamics of the classical
junction is viscous and both relaxation and tunneling
of the quantum junction are incoherent [2, 1]. We will
analyze this situation in detail in the next section; the
obtained results are also relevant for other choices of
parameters, c.f. below.

PHASE DIAGRAM - STRONG DAMPING

In the following, we determine for which currents i and
coupling constants k a zero temperature decay of a sym-
metric metastable state (ϕ1 = ϕ2 = arcsin i, up to an ar-
bitrary multiple of 2π) is allowed in the interferometer
potential v(ϕ1,ϕ2). The result is displayed in a dynami-
cal phase diagram in the j-k-plane, see Fig. 4, where the
critical line jc(k) separates regions where this decay is
prohibited (localized state) from regions where it is al-
lowed (delocalized).

Assuming junction 1 to behave strictly classical, (i.e.
considering the limit of very large C1), a quantum de-
cay of the SQUID in a metastable state can only occur
at fixed ϕ1, i.e. through an imaginary-time trajectory of
ϕ2 in the effective potential veff(ϕ2) = v(ϕ1 = const.,ϕ2),
see Fig. 3. We will adopt this approximation for all tun-
neling processes throughout the discussion. For suffi-
ciently large j, the quantum degree of freedom ϕ2 un-
dergoes tunneling to a new local minimum nearby 2πn,
while the classical degree of freedom ϕ1 = arcsin j re-
mains localized, thus allowing a flux ' nΦ0, n ∈ N to
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FIGURE 3. Effective potential veff(ϕ2) = v(ϕ1 = const.,ϕ2)
(solid line) and the parabola remaining after dropping cosϕ2
(dashed line) for j = 0.5, k = 0.02 and ϕ1 = arcsin j. The bullets
and arrows illustrate the sequential decay of the quantum phase
ϕ2 to the ground state for the case of strong damping.

enter the SQUID loop, cf. Fig. 3. If the resulting force on
the classical phase ϕ1 is sufficiently large, the Münch-
hausen decay is enabled with a classical decay of ϕ1 and
successive iteration of quantum decay (directed along
ϕ2, flux entry) and classical relaxation (directed mainly
along ϕ1, flux exit), cf. Fig. 2.

For undercritical currents j < 1 the described initial
state, ϕ1 = ϕ2 = arcsin j, is stable against a decay in-
volving the classical junction; however it is, for k <
j/(π− arcsin j), unstable with respect to a quantum de-
cay of ϕ2 since the minimum of veff(ϕ2) near ϕ2 ≈ 2π
is lowered below the initial one and one or more phase
slips of ϕ2 are possible. In order to determine whether
the SQUID will remain in a stable or enter a finite volt-
age state at given j,k we proceed in two steps: First, we
have to determine where the successive quantum tunnel-
ing of ϕ2 comes to a halt, i.e., which side minimum is
quantum-stable. This is equivalent to finding the global
minimum of the effective potential veff(ϕ2). Fixing the
phase across the classical junction ϕ1 = arcsin j, one im-
mediately sees that the quantum-stable minimum is the
one near ϕ2 ≈ 2πn if n is the largest integer, such that

k < k+
c,n( j)≈ j

(2n−1)π− arcsin j
. (5)

The sequence of phase slips of the quantum junction
leads to an accumulation of magnetic flux in the SQUID
loop, inducing a screening current. Consequently, the
current through junction 2 is reduced whilst that through
junction 1 is increased. The magnitude of the induced
current depends strongly on the coupling constant k; for
given n, it is only large enough to drive the classical
junction overcritical if

k > k−c,n( j)≈ 1− j
(2n−1/2)π + arcsin(2 j−1)

. (6)

If this is the case, the SQUID enters a finite voltage
state where quantum tunneling of junction 2 (an approx-

imate flux unit enters the loop) and classical relaxation
of junction 1 (flux leaves the loop) interchange sequen-
tially (see Fig. 2). If k < k−c,n( j), the SQUID resides in a
localized state and a further increase in j is necessary
to drive the system unstable. The two conditions Eqs.
(5) and (6) generate a web of crossing lines in the j,k-
plane ( j+c,n(k) and j−c,n(k) are inversed expression to Eqs.
(5) and (6) correspondingly), determining the critical line
jc(k) marking the dynamic transition from a localized to
a delocalized state (Fig. 4). In the limit k→ 0, where the
cosine in the potential Eq. (3) becomes a small correction
to the parabola, the critical line jc(k) approaches 1/2; this
indicates that all current is redirected through junction 1
and delocalization takes place at I = Ic, the critical cur-
rent of a single junction,
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FIGURE 4. Phase diagram of the dynamically asymmetric
dc-SQUID as a function of bias current j = I/2Ic and inductive
coupling k = Φ0c/2πLIc. Here, we assume strong damping
αp,1 À 1 and αp,2 > 1. The effective critical current jc(k)
(solid line) marks the boundary between a localized classical
junction (lower bias j < jc) and a delocalized classical junction
( j > jc), corresponding to a finite voltage state of the SQUID.
Branches with negative slope are determined by a classical
instability (mainly along ϕ1), while those with positive slope
are determined by a quantum instability of the light junction.
For j < jc(k), the dotted lines j+c,n(k) mark the entry of flux
through the quantum junction (the integer n approximately
quantifies the flux through the ring in the stable state); these
lines can be measured via monitoring of the flux threading
the loop. For j > jc(k), the dashed lines j−c,m(k) mark the
minimum number m of flux units necessary to delocalize the
classical junction. The inset shows a comparison between the
approximate result (solid line) and the exact numerical result
(dashed).

The simple arguments above have to be refined in
order to obtain the precise location of the critical line
jc(k). First, the condition of classical stability is but the
standard determination of the critical current of a dc-
SQUID’s asymmetric minimum [3]. In our case, where
classical stability along the ϕ2-direction is guaranteed,



the relevant set of equations is given by

sin(ϕ̄n
1 ) = j− kc,n(ϕ̄n

1 − ϕ̄n
2 ), (7)

sin(ϕ̄n
2 ) = j + kc,n(ϕ̄n

1 − ϕ̄n
2 ), (8)

cos ϕ̄n
1 cos ϕ̄n

2 = −kc,n(cos ϕ̄n
1 + cos ϕ̄n

2 ), (9)

and has to be solved (numerically) for kc,n( j) and ϕ̄n
1,2,

the coordinates of the true minima near ϕ1 = arcsin j,
ϕ2 = 2πn. Eq. (6) is an approximate solution to Eqs. (7)-
(9) in the limit of k ¿ 1. Second, as tunneling of the
quantum junction might be enabled only after the relax-
ation of the classical junction to a minimum, condition
Eq. (5) has to be corrected to

k+
c,n( j) =

j
(2n−1)π− ϕ̄n−1

1
, (10)

taking into account the change of the effective potential
veff(ϕ2) upon a change in ϕ1. The exact numerical so-
lutions of Eqs. (7)-(9) and (10) are shown in the inset
of Fig. 4, where the approximate solution is seen to be
rather precise.

The critical current line jc(k) is constructed from in-
terchanging segments of j+c,n(k) and j−c,n(k), resulting in
the dynamical phase diagram, Fig. 4. Note that the dif-
ferent nature of the decay, classical or quantum, associ-
ated with the two types of critical lines may allow for
an experimental distinction: Ramping the current past a
+-type segment of jc(k) triggers a quantum decay with
a broad histogram describing multiple measurements. A
−-type segment of jc(k) triggers a classical decay with a
sharp histogram (the quantum decay of ϕ2 needs to have
occurred already, which limits the ramping speed before
reaching the critical line). Note that the lines j+c,n(k) are
detectable throughout all the stable portion of the phase
diagram, e.g., via a measurement of the flux threading
the loop (the flux increases by approximately one flux
unit upon crossing the dotted lines in Fig. 4).

WEAK DAMPING

The behavior of the system for weak damping αLC,2 ¿
1, αp,i ¿ 1 strongly depends on preparation. Here we
are not going to discuss all the possible situations. In-
stead, we concentrate on the most interesting case. De-
pending on parameters, after tunneling the quantum de-
gree of freedom may become delocalized between dif-
ferent local wells of the ‘super-well’ Fig. 3 . These side-
well states have different lifetimes. The dissipation de-
scribed by the normal resistance R in the RCSJ-equation
of motion, cf. Eq. (2), leads to typical finite lifetimes
τ2 ∼ RC2 = 1/2α2ωp,2 of the excited states |l〉 of the
quantum junction.[4] A much longer lifetime τ̃2 shows
up if the quantum junction is trapped in a local ground

state of a side-well in veff(ϕ2), cf. Fig. 5. The decay
then is protected through a large barrier Eb, enhanc-
ing the typical lifetime to a value τ̃2, with τ2 ¿ τ̃2 ∝
exp(2γ

√
EJ/4Ec,2).[5] Thus, there are two (extreme)

ways how a highly exited state in the ‘super-well’ of
veff(ϕ2) can decay, see Fig. 5, either via states within the
super-well involving the typical lifetime τ2, or via states
involving a tunneling process, resulting in an exponen-
tially larger decay time of the order of τ̃2.
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FIGURE 5. Illustration of decay sequences of an excited
‘super-well’-state of the quantum junction in the effective po-
tential veff(ϕ2). Solid arrows indicate a decay sequence in-
volving only states within the ‘super-well’ with a typical de-
cay time τ2. The dashed arrows illustrate another (extreme)
decay sequence, involving localized states in the side-minima
of veff(ϕ2). The decay time then involves the typical lifetime
τ̃2 À τ2 of local ground states within side-wells.

The quantum junction may be trapped in any side-
well for a significant amount of time. If it gets trapped
in a distant side-well (large values of ϕ2 in Fig. 5) it ex-
erts a larger force on the classical junction. The classical
junction is pulled out of its metastable state more effi-
ciently in this case. We can define two extreme values
for the critical current, a lower limit j(1)

c (k) arising from
the largest attainable fluxon index n, and an upper limit
j(2)
c (k) associated with the index n of the global minimum

of the quantum junction. The resulting phase diagram is
displayed in Fig. 6.

The two critical lines j(1)
c (k) and j(2)

c (k) define a broad
intermediate regime, see the grey area in Fig. 6, where
the decay of the system is of probabilistic nature. The
system is localized for j < j(1)

c (k) and delocalized for
j > j(2)

c (k). The decay probability in the intermediate
regime is neither 0 nor 1, but depends on which minimum
the quantum junction ϕ2 decays to.

EXPERIMENTAL IMPLEMENTATION

The running state following a Münchhausen decay is as-
sociated with a finite time-averaged voltage across the
device. The above results thus can be tested experimen-
tally by measuring the voltage drop as a function of the
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FIGURE 6. Effective critical currents of the dynamically
asymmetric SQUID for τ̃2 À ω−1

p1 and fast ramping. The sys-
tem always turns resistive for j > j(2)

c (k) but never turns re-
sistive for j < j(1)

c (k). For j(1)
c < j < j(2)

c the delocalization of
the system is determined by the statistical nature of the decay
process of the quantum junction involving the side minima.

applied bias current I and of the inductance L of the
SQUID.

Mapping any part of jc(k) requires changing the cou-
pling k ∝ L−1. It is difficult to vary the induction of the
loop, which is usually fixed after fabrication. One (al-
though rather difficult) way to modify it is to install a
diamagnetic shield. Another way to trace the critical cur-
rent line is obtained by applying an external magnetic
flux Φe to the sample, in which case the potential Eq. (3)
has to be replaced by

v(ϕ1,ϕ2) = 1− cosϕ1 +1− cosϕ2

− j(ϕ1 +ϕ2)+
k
2
(ϕ1−ϕ2−2πΦe/Φ0)2. (11)

The critical current jc then can be studied as a function of
Φe. The analysis proceeds in the same way as before: a
change in k altering the opening angle of the parabola in
v(ϕ1,ϕ2) is replaced by a shift in the parabola’s position
due to the applied flux Φe.

The results are invariant under the shifts Φe/Φ0 →
Φe/Φ0 ± 1 and n → (n± 1). The Münchhausen decay
thus can be studied within a finite interval, e.g. Φe/Φ0 ∈
[−0.5,0.5], and the resulting phase diagram is displayed
in Fig. 7.

Biasing the SQUID with an external magnetic flux has
a convenient side effect: For negative flux Φe, the cross-
ing point of j+c,n(k) and j−c,n(k) is shifted to larger values
of k and the tunneling barrier for ϕ2 is lowered, allowing
to study the Münchhausen effect using a SQUID with
considerably smaller inductance and hence smaller size.
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FIGURE 7. Phase diagram of the dynamically asymmetric
SQUID in the strong damping case as a function of the exter-
nally applied flux Φe and bias current j. Here, the coupling
k ∝ L−1 is fixed at a value k = 0.06; the critical lines in the
diagram correspond to n = 2. The critical line is periodic in Φe
with a period Φ0, a consequence of the invariance under the
replacements Φe/Φ0 →Φe/Φ0±1 and n→ (n±1).

CONCLUSION

We have shown that a system consisting of two degrees
of freedom can escape out of a metastable state, even
if one of the degrees behaves fully classical, provided
the second one shows quantum behavior. This can be
realized in a dynamically asymmetric dc-SQUID. The
“Münchhausen-decay” involves tunneling of the quan-
tum junction, where magnetic flux accumulates in the
superconducting ring and eventually redirects enough
current through the classical junction as to drive it
overcritical. The resulting phase diagram of the SQUID
appears to be unexpectedly rich.

ACKNOWLEDGMENTS

We thank A. Larkin, A. Ustinov, G. Lesovik, A. Lebedev,
A. Wallraff, and E. Zeldov for interesting discussions
and acknowledge support of the Fonds National Suisse
through MaNEP.

REFERENCES

1. A.O. Caldeira and A.J. Leggett, Ann. Phys. (NY) 149, 374
(1983).

2. A.J. Leggett, S. Chakravarty, A.T. Dorsey, M.P.A. Fisher,
A. Garg, and W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).

3. W.-T. Tsang and T.V. Duzer, J. Appl. Phys. 46, 4573
(1975).

4. D. Esteve, M.H. Devoret, and J.M. Martinis, Phys. Rev. B
34, 158 (1986).

5. D.V. Averin, J.R. Friedman, and J.E. Lukens, Phys. Rev. B
62, 11802 (2000).


