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Abstract. Symmetry broken electronic states give rise to topological defects: from extended domain walls - "stripes" as
solitonic lattices to microscopic solitons as anomalous quasi-particles and instantons in their dynamics. We shall collect and
interpret experimental evidences on existence of microscopic solitons, and their determining role in electronic processes of
quasi-1D electronic crystals. Thus, the ferroelectric charge ordering in organic conductors gives access to several types of
solitons observed in conductivity (holons) and in permittivity (polar kinks), to solitons’ bound pairs in optics, to compound
charge-spin solitons. In charge density waves, the individual phase solitons have been visually captured in recent STM
experiments. The resolved subgap tunneling spectra recover these solitons (in aggregated form of dislocations in statics and
as instantons - the phase slips in dynamics), as well as the amplitude kinks - the spinons.

The theory relies upon the regime of quantum dissipation provided by soft mode emittance in the course of the soliton
creation, and on effects of dimensional crossover. With onset of a 2D or a 3D long range order, the topologically nontrivial
solitons experience the confinement resulting in the spin-charge recombination. It originates the symmetry broken spin-
or charge- roton configurations with charge- or spin- kinks localized in the core, correspondingly for cases of repulsion
and attraction. These complex excitations can be viewed as nucleuses of the melted stripe phases, which appears in doped
antiferromagnetic - Mott insulators or in spin-polarized superconductors and charge density waves.
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INTRODUCTION.

Possibility of constructing elementary particles from
continuous matter - fields, is the old paradigm in physics
[1]. Such hypothetical objects, known as solitons (or in-
stantons for related transient processes) have been dis-
cussed in field theory, high energy physics, cosmology,
in conjugated polymers and other quasi one-dimensional
(1D) conductors, in biological macro-molecules, etc.

Most of strongly correlated electronic systems show
various types of symmetry breaking giving rise to de-
generate ground states. The degeneracy allows for topo-
logically nontrivial perturbations exploring the possibil-
ity of traveling through different allowed ground states.
Their most known forms are plain domain walls, vortex
lines or dislocations, which are still macroscopic objects
extending in two or three dimensions (see [2, 3] for gen-
eral views and sophisticated applications). Of our special
interest, however, are totally localized and truly micro-
scopic objects which energies and quantum numbers are
on the one-electron scale. These subgap particles would
determine the observable properties, which are usually
ascribed to conventional electronic excitations.

Role of solitons in electronic properties was appreci-
ated in theories since mid 70’s (see reviews [4, 5], and
also [6, 7] for a more recent development). The soli-
tons were firstly accessed in experiments on conduct-
ing polymers of early 80’s [8]. New motivations came in

early 2000’s from discoveries of the ferroelectric charge
ordering ([10, 11], and a review [12]) in organic con-
ductors [9] , from new accesses via nano-scale experi-
ments [13, 14] in materials with Charge Density Waves
(CDW) [15], from optics of new conducting polymers
[16]. Today, various solitons show up in conductivity,
tunneling spectroscopy, optical absorption. Instantons -
the corresponding dynamical processes - are responsible
for subgap transitions leading to a pseudogap formation
[17, 18, 19].

The content of this review will be mostly endorsed
by events in Electronic Crystals, see [20, 21], espe-
cially cases of Charge/Spin Density Waves, Charge Or-
dering/Disproportionation, Wigner crystals, and stripes.
We shall review the last decade experiments confirming
the solitons in organic conductors with the ferroelectric
charge ordering. Three different types of solitons show
up in experiments: a single-charged amplitude king - the
"holon" in a general terminology of strongly repulsive
electronic systems, the polarization kink carrying a frac-
tional charge, and the topologically bound charge-spin
soliton. We shall interpret new experiments on direct ob-
servations of microscopic solitons in processes of the co-
herent internal tunneling in CDWs [13, 14]. There are
amplitude solitons corresponding to the long sought spe-
cial quasi-particle - the spinon. The same experiment also
gives access to the junction reconstruction via sponta-
neous creation of the grid of phase solitons. The low en-
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ergy tunneling recovers the quantum phase slips at adja-
cent chains.

We shall recall the theory [19] of internal coherent tun-
neling in the pseudogap region. The instanton approach
allows to calculate the interchain tunneling current both
in single electron (amplitude solitons) and bi-electron
(phase solitons) channels.

OBSERVATIONS OF SOLITONS IN
CHARGE-GAP SYSTEMS

Ferroelectricity and charge ordering in
quasi 1D organic conductors.

This decade, a true workshop on solitons was opened
in organic conductors from the family (TMTCF)2X, see
[9] - chapter [12]. The facility is provided by the discov-
ery of the ferroelectricity endorsed by the charge order-
ing [10, 11, 22]. The zoo of solitons is largely accessed
thanks to possibility of switching on/off of the Mott state
by means of the charge ordering.

This is the state with no magnetic long range order:
spin degrees of freedom are gapless and split-off, charge
degrees of freedom are described by the chiral phase
ϕ(x, t) which we define as for a conventional 2KF CDW
∼ cos(ϕ +2KF x), and the phase Hamiltonian becomes

H = (h̄/4πγ)[v(∂xϕ)2 +(∂tϕ)2/v]−U cos(2ϕ−2α)

Here v is a phase velocity, and the spontaneous phase
center shift α is the signature of the ferroelectricity,
U is the Umklapp scattering amplitude [23] which is
responsible for the charge gap formation. The constant
γ (usually called the Luttinger liquid parameter - Kρ )
determines several regimes: γ < 1 at any repulsion, then
U is preserved if it is already build-in, - this is the
generic Mott state case for a half-filled band; γ < 1/2 at
a stronger repulsion, then U is spontaneously generated
even away from the bare half-filling, - this is our Charge
Ordering case.

The multiple ground state degeneracy gives rise to a
variety of solitons. Even at the given charge ordering
amplitude, the ground state energy HU = −U cos(2ϕ −
2α) is doubly degenerate between ϕ = α and ϕ = α±π
(we assume U > 0). It allows for phase ∓π solitons -
"holons" with the charge e and no spin. The quantum
Sine-Gordon model is exactly solvable; the excitation
spectrum and even transitions intensities are known, see
[24, 25]. Just at the border line γ = 1/2 of the Charge
Ordering regime, the spectrum changes giving rise to
kink’s bound states - breathers.

Indirect evidences on solitons come already from
conductivity and thermodynamics: separation of charge

from spin; enhanced activation energy for interchain
transport. But particularly intriguing is the observation
of solitons in dynamics - via optics for organics (and
conducting polymers) and via tunneling (by now only in
CDWs, see the next section).

FIGURE 1. Optical absorption in two organic conductors
from the family (T MT SF)2X showing a coexistence of the
high frequency features inherent to the 1D Mott insulator state,
and the low energy metallic rise. We interpret the major peak as
the excitation of the two-kink bound state, while the shoulder
above it should be the threshold for creating unbound pairs.
The lower curve, for X = AsF6, shows an almost ideal exam-
ple, while the upper, for X = PF6, curve is complicated by an
additionally symmetry breaking (the spin-Peierls transition) at
lower energies; it signifies the processes of spin-charge topo-
logical reconfinement described in the next subsection. Optical
conductivity is replotted from data of M. Dressel group (un-
published, see [26, 27] for complementary information).

The interpretation of the Fig.1 corresponds to detailed
theory for optics of solitons [24, 25] based upon the ex-
act solution of the quantum sine-Gordon model. A gen-
eral feature of the whole gapful regime γ < 1 is the two-
particle gap Eg = 2∆ for creation of a pair of ±π soli-
tons. But contrary to the common sense intuition, and
to the elementary theory of semiconductors, the absorp-
tion intensity I(Ω) has no singularity at the threshold
Eg. Optical density of states law DOS ∼ (Ω−Eg)−1/2

is compensated by vanishing of the matrix element, then
the absorption starts smoothly as I ∼ (Ω−Eg)1/2. More-
over, for the generic Mott state without the charge order-
ing, 1/2 < γ < 1, there would be no bound states, hence
no absorption below Eg. But our case of the Mott state
due to the spontaneous charge ordering requires γ < 1/2,
hence a number of sharp peaks in absorption even below
the two-particle gap Ω < 2∆ - at a sequence of quantum
breathers which are bound states of two solitons. This is
what seems to be observed in experiment, Fig.1.

Further symmetry breaking: spin-charge reconfinement
and compound solitons.

Some compounds from the (T MT T F)2X family show
a subsequent, at lower temperature T2 phase transition of
the tetramerization which can be identified as the spin-
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Peierls state; it gains the energy from opening of the spin
gap ∆s. We argue that this transition brings to life a spe-
cial state of two topologically coupled solitons which ex-
plore both the charge and the spin sectors, thus realizing
the spin-charge reconfinement. Within the reduced sym-
metry, the potential part of the Hamiltonian becomes

HU =−Ucos(2ϕ−2α)−V cos(ϕ−β )cosθ

Here θ is the spin chiral phase, such that θ ′/π is the
smooth spin density. The new, at T < T2, V - term is the
amplitude of the mixed (β 6= 0 due to inversion symme-
try breaking of the ferroelectricity already at Tco > T2).
Its formation destroys the spin liquid which existed at
T > T2 on top of the charge ordering. Major effects
of the V -term are a) to open the spin gap 2∆s corre-
sponding to creation of the triplet excitation as a new
{δθ = 2π , δϕ = 0} purely spin solitons; b) to prohibit
former δϕ = π charged solitons - the holons, now they
are confined in pairs bound by spin strings; c) to allow
for compound spin-charge topologically bound solitons
{δϕ = π , δθ = π} which leave the Hamiltonian invari-
ant. This particle bears the normal electron’s quantum
numbers: the charge e and the spin 1/2, but their local-
ization is different: sharply within h̄v/∆ for the charge e,
while loosely within h̄v/∆s for the spin 1/2.

SPIN-GAP CASES WITH CONTINUOUS
SYMMETRY: INCOMMENSURATE
CDW AND SUPERCONDUCTORS.

Common problems of excitations and
stripes in CDWs and superconductors

Both CDWs and superconductors (SC) are the spin-
singlet states, which are subject to deparing under the
Zeeman splitting effect of the magnetic field [28]. Above
a certain critical field, the ground state develops a peri-
odic superstructure (see a short review and references in
[6, 7]). In superconductors it is known as the FFLO state
named after [29, 30], which has attracted a great deal of
attention recently (see e.g. [31, 32]) because of events
in organic and heavy-fermion superconductors, in cold
atoms. Its formation is expected to be a very week effect
in conventional superconductors, unless it is endorsed by
strong coupling ∆∼ E f , or by flattened Fermi surfaces -
particularly in quasi-1D case. Then the theories of early
80’s (see [44] and the review [4] for CDWs, and [33]
for superconductors), predict formation of solitonic lat-
tices with unpaired spins localized at midgap states near
the order parameter nodes. For CDWs there are convinc-
ing theoretical and experimental evidences, that beyond
the coherent walls, also the separate amplitude solitons

(the walls building blocks) exist as quasi particles - the
spinons. Based upon the CDW notion, in superconduc-
tors we expect to find a tightly bound pair of half-integer
vortices sharing one unpaired spin, as we shall describe
below.

We start to show most typical and convincing evi-
dences for existence of the gap in the excitation spectrum
of singlet-ground-state electronic systems: superconduc-
tors and CDWs, Fig.2. Within the standard BCS - Bogol-
ubov view, the excited states are the linear combinations
of: electrons and holes at ±p for a SC, or of electrons
or holes at −p and p + 2p f for CDWs. Corresponding
spectra are E(k) = ±(∆2 + (v f k)2)1/2, k = p− p f . But
is it always true? It is proved for typical SCs - Fig.2a;
left questionable for strong coupling SC cases - Fig.2b:
high-Tc, real space pairs, cold atoms, bi-polarons; stays
clearly incomplete for CDWs - Fig.2c, as proved by mod-
ern experiments ; is certainly inconsistent for 1D and
even quasi 1D systems as proved theoretically - Fig.2d,
[6, 7]. There are the instantons, the solitons and their ar-
rays which are responsible for these confusions. A re-
lated complex of well established facts for incommensu-
rate CDWs (ICDW) which are symmetrically equivalent
to SCs is summarized in [34].

Solitons in incommensurate CDWs

While the charge ordering was a crystal of electrons,
the ICDW is a crystal of electron pairs. Its lowest en-
ergy current carrier may be the charge-2e defect of
adding/missing one period at the defected chain. It is
the ±2π soliton of the ICDW order parameter OICDW =
Acos(2K f x + ϕ), which has been recently captured and
visualized in STM experiments [35], Fig.3.

The singlet pair can be broken into spin 1/2 compo-
nents, but it will not be an expectedly liberated electron-
hole pair at ±∆0. Rather, there will be two spin carrying
"amplitude solitons" (AS) - zeros of the order parame-
ter distributed over the length ξ0 = h̄vF/∆0. ([37], see
the Appendix). The unpaired electron is trapped at the
midgap state associated to the amplitude soliton, with the
energy ≈ 2∆0/3, the total charge 0, and the spin 1/2, so
this is the CDW realization of the spinon. The AS has
been visualized, see Fig.3b, by the STM as a half-period
defect [36], similarly to the full-period phase soliton of
Fig.3a.

A regular lattice of ASs should appear in high mag-
netic field [38] as it might have been observed as the
CDW superstructure [28] and in spin-Peierls systems (it
was clearly seen by the NMR experiments [39]). Gen-
eralization of the spin-soliton lattice from the ICDW to
the superconductor is the FFLO [29, 30] phase in spin-
polarized superconductors. Then the same AS becomes

Microscopic solitons in correlated electronic systems: theory versus experiment. January 18, 2009 3



0 21−1−2

1.0

0.5

U

I

FIGURE 2. Deparing gaps from tunneling experiments - plots of the tunneling conductance dI/dU versus voltage U . Super-
conductors: Nb (a) and CaC6 (b); CDW in NbSe3 (c). The panel (d) - gives the theoretical prediction [19] for the instanton-
mediated tunneling current I(U) in the subgap region |U | < 2∆ (U is shown in units of ∆; the plots correspond to temperatures
T/∆ = 1/4,1/6,1/8).

FIGURE 3. Left: Visualization of the 2π soliton - the pre-
fabricated pair of electrons, by the STM on NbSe3 [35]. At the
(red) front line the defected chain is displaced by half of the pe-
riod. Along the defected chain the whole period ±2π is missed
or gained. Right: STM visualization of the half-period soliton
(the amplitude kink) in a quasi1D complex Ni0.05Pd0.95Br [36].
White arrow: 1D chains direction, blue arrow: the defected
chain.

an elementary stripe fragment in both cases of the CDW
and FFLO, with a similarity [7] to holons versus stripes
in doped AFM insulator.

Fig.4 quotes some results from a new type of inter-
nal interlayer tunneling experiments (see [13, 14, 40] for
the CDW applications). Together with the expected sharp
feature at the threshold 2∆ for free electron-hole pairs,
we see the lower energy peak positioned close to the the-
oretical value EAS = 2/π∆ for the amplitude soliton en-
ergy [13]. Moreover, at even lower energies forbidden for
pair-breaking processes, we see the threshold Vt which
terminates the bi-electron tunneling processes leading to
formation of solitons captured in the Fig.3. Even the os-
cillating fine structure within the gap is not a noise - it
records events of sequential entering into the junction
of dislocation lines which are aggregates of 2π solitons
[14].

SOLITONS CONFINEMENT AND THE
LONG RANGE ORDER.

A major puzzle, as well as the inspiration, coming from
the described experiments is that the amplitude solitons

FIGURE 4. Tunneling in mesa-junctions of NbSe3 [13, 14]
- the material with two CDWs, shows a coexistence of several
spectral feature: the peak at 2∆0 for the inter-gap creation of
free e-h pairs, creation of the amplitude soliton at Eas ≈ 2∆0/3,
the bi-particle spinless charge injection threshold at Vt ¿ ∆0.
a) the high T CDW1; b) the low T CDW2 [40].

were observed within the low temperature (T < Tc) phase
with the long range 3D order. The hidden obstacle is the
effect of the confinement appearing in higher dimensions
D>1 [7, 41]. Commuting between degenerate minima on
only one chain would lead to a loss of the interchain or-
dering energy proportional to L‖ - the length along the
chain till the next defect. In case of discrete symme-
tries (only the amplitude kinks as in the above Z2 case of
charge ordering) the solitons are bound in topologically
trivial pairs with an option for a subsequent phase transi-
tion to form cross-sample domain walls [42, 43]. But for
a continuous symmetry, the gapless mode can cure the
interruption from the amplitude kink.

At the 1D level, for systems with a complex order pa-
rameter like ICDW or SC, the amplitude soliton A(x =
−∞) ⇒ −A(x = +∞) performs the sign change of the
order parameter O at an arbitrary ϕ = cnst. Even being
favorable in energy in comparison with an electron, it
cannot be created dynamically even in 1D, and is pro-
hibited to exist even stationary at D>1. The resolution
is to invoke the combined symmetry: the amplitude kink
A ⇒−A coupled with the half-integer ϕ ⇒ ϕ ± π vor-
tex of the phase rotation which compensates for the am-
plitude sign change. The resulting Spin-Roton complex
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allows for several interpretations: 2D view is a pair of π-
vortices sharing the common core which bears one un-
paired spin which stabilizes the state; 3D view is a ring
of a half-flux vortex line, its center confines the spin; at
any D>1 this is a nucleus of the melted FFLO phase in
the spin-polarized superconductors.

FFLO phase in superconductors.

FFLO refers to an undulating phase in superconduc-
tors with an imbalanced spin population. In this abbre-
viation, FF and LO stand for articles [29] and [30]. The
conventional homogeneous phase implies filling the ex-
cess spins to quasi-particle states above the gap, accord-
ing to the Fig.5a copied from [29].

Modulated phases of the complex order parameter O
with a wave number q 6= 0 have been suggested: FF -
O ∼ exp(iqx), LO - O ∼ cos(qx). The appropriately cho-
sen vector q (Fig.5b) erases mismatching at some (at
all in a quasi-1D case) parts of the FS, hence extend-
ing existence of the superconducting phase against the
Zeeman splitting in the magnetic field. This interpreta-
tion is valid for both suggestions FF and LO, and within
the Ginzburg-Landau phenomenology their distinction
seems to be an accidental matter of combinatorics. But
for our goals, there is a particular insight to the LO case
relevant to solitonic lattices. Planes of the order parame-
ter zeros concentrate the excess spins providing the split
intragap states which are able to accommodate unpaired
electrons. This scenario is directly linked to the solitonic
lattices in quasi-1D case. The exact solution in 1D [33]
for the FFLO, equivalent to the one for the CDW [44], is
shown in Fig.6.

Inverse rout: from stripes to solitons and
fractional vortices.

If the solitonic lattice melts, then in 1D each element
becomes a particle - the amplitude soliton i.e. the spinon.
In 2D, the amplitude defect should be complemented by
the pair of π-vortices, Fig.7. This quasi 1D picture is a
secure generalization of the rigorous 1D picture. In gen-
eral, the cost of creating a pair of vortices is∼Eϕ ln(L⊥),
where Eϕ is a characteristic energy of phase deforma-
tions and the string length L⊥ is the distance (in units of
the interchain spacing) between the opposite π-vortices.
This loss must be equilibrated by the gain −∆∗L⊥ for
the string formation, where ∆∗ = ∆−EAS ∼ ∆ is the en-
ergy yielded from accommodating unpaired electrons to
the midgap states of the string. In the quasi 1D case,
Eϕ ∼ Tc < ∆ is given by the low phase-ordering tem-
perature Tc ¿ ∆, then the total energy Eϕ ln(L)−∆∗L⊥

keeps to be negative down to smallest elementary length -
this is why the combined kink-roton complex is certainly
a stable elementary quasi-particle. But for isotropic su-
perconductors Eϕ ∼ EF which allows for only a large
scale complex, at L⊥ > EF/∆∗. The strong coupling limit
∆ ∼ EF is necessary, which leaves this scenario for a
bi-polaronic (real space pairing) superconductor or for
a condensate of paired cold Fermi atoms.

In absence of a microscopic theory for strong coupling
vortices (i.e. with only a single pair of intra-gap states
- their number is ∼ EF/∆ [45]), we can rely upon ex-
isting [47] numeric modeling (still performed within the
weak coupling BCS scheme). It confirms indeed, that at
presence of unpaired spins the usual integer 2π vortex,
created by rotation (magnetic field), splits into two π-
vortices, see Fig.8.

The energetics behind the vortex splitting is clear. A
2πN vortex energy ∼ N2, and it can be decreased by
fragmentation, normally down to N of 2π vortices. But
even a further splitting into two half-integer vortices be-
comes allowed if the amplitude domain wall opens be-
tween the split cores. At the macroscopic level, one can
find analogies among richness of topological properties
of the superfluid 3He [3, 46]

A hole in the AFM environment.

Consider the quasi-1D system with repulsion at a
nearly half filled band, which is the SDW rout to a
general doped antiferromagnetic Mott-Hubbard insulator
[48]. The 1D bosonized Hamiltonian can be written as ()
augmented by part for the gapless spin mode ∼ ∂θ)2. In
1D, the excitations are the (anti)holon as the ±π soli-
ton in ϕ , and the spin sound in θ , which are decoupled.
At D>1, below the SDW ordering transition, the order
parameter (the staggered magnetization < Sx + iSy >) is
Osdw ∼ cosϕ exp(iθ). Hence, the π− soliton in ϕ be-
comes the amplitude kink (cosϕ →−cosϕ), and to sur-
vive in D>1 it should enforce the π rotation in θ , then
the sign changes in both of the two factors compos-
ing Osdw, compensate and the configuration becomes al-
lowed. Such a combined semi-vortex - Fig.9 might be
significant also in sliding incommensurate SDWs which
processes an even richer order parameter [49].

CONCLUSIONS.

Existence of solitons is proved experimentally in single-
and bi-electronic processes of CDWs in several quasi 1D
materials. Solitons take over band electrons in the role of
primary excitations - charge or spin carriers. They fea-
ture self-trapping of electrons into mid-gap states and
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FIGURE 5. Spin-imbalanced superconductor. a) Filling of the bare spectrum of the homogeneous phase. b) Modulated phase
improves the matching at some parts of the split up/down Fermi surfaces.

FIGURE 6. Solitonic lattice in the CDW or the superconduc-
tor under a slightly supercritical Zeeman splitting. The plots
show distributions of the order parameter, and of the density of
unpaired spins - mid-gap states concentrated near the zeros of
the order parameter.

+ - +/-

+

+

-/+ - +

FIGURE 7. Kink-roton complexes as nucleuses of melting
of the FFLO lattice, importantly in the LO version. The defect
is embedded into the regular stripe structure (black lines for
the amplitude zeros); +/- are the alternating signs of the order
parameter O amplitude. Termination points of a finite segment
L⊥ (red color) of the O = 0 line must be encircled by semi-
vortices of the phase rotation (blue circles) to resolve the signs
mismatch. The minimal segment corresponds to the elementary
kink carrying spin 1/2.

separation of spin and charge into spinons and holons,
sometimes with their reconfinement at essentially dif-
ferent scales. Continuously broken symmetries allow for

FIGURE 8. Splitting of the conventional integer orbital vor-
tex into two counterparts in presence of a population of un-
paired spins [47]. For our goals, we just reformulate these re-
sults inversely – unpaired spins creates the vortex pair even at
no orbital magnetic field.

individual solitons entering the low temperature phases
with long range ordered states: SC, ICDW, SDW. Then
the solitons take forms of amplitude kinks which are
topologically bound to half-integer vortices of gapless
modes - π-rotons. These combined particles substitute
for electrons - certainly in quasi-1D systems, which is
valid for both charge- and spin- gaped cases. The descrip-
tion may be extrapolated to strongly correlated isotropic
cases. Here it meets the picture of fragmented FFLO or
stripe phases.
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APPENDIX: MICROSCOPICS OF
SOLITONS IN INCOMMENSURATE

CDWS: .

Here we quote some details on microscopic origination
of solitons via conversion of electrons in ICDW.

Solitons in CDWs

Recall firstly a universal, while restricted microscopic
insight to excitations in the spin-gap cases - SC or CDW.
The starting single chain level is well described by the
bosonization language. The Hamiltonian (shown here
schematically)

H1D ∼ (∂θ)2−V cos(2θ)+(∂ϕ)2

is written in terms of phases for the spin - θ and the
charge - ϕ . The energy∼V comes from the backward ex-
change scattering V ∼ g1 of electrons. The pair-breaking
excitation - the s = 1/2 spinon, is the soliton connect-
ing the degenerate minima of H1D: θ ⇒ θ + π . The sin-
glet order parameter, for either SC or CDW (depend-
ing on a definition of the charge phase ϕ) is OSC,CDW ∼
cosθ exp(iϕ). Its amplitude A = cosθ changes the sign
across the allowed θ - soliton, hence the spinon is an al-
ternative description of the same amplitude soliton which
appears in BCS-Peierls type models.

Within the quasiclassical or adiabatic BCS models, the
topological solitons are characterized by a chiral angle

2θ = ϕ(x = +∞)− ϕ(x = −∞). It defines a family of
"chordus solitons" , Fig.10, which provides a continuous
path in the configurational space for electron’s selftrap-
ping. The time evolution, θ(t), describes the selftrapping
dynamics - the instanton [17].

With increasing of 2θ from 0 to ±2π , the level E0
sweeps the gap from ±∆0 to ∓∆0, providing the spec-
tral flow across the gap. Being filled with two particles,
this flow performs the conversion from the normal to the
condensate density. Self-trapping of one electron at ∆0
or one hole at −∆0 will proceed gaining the energy until
the configuration takes a stable form of the purely ampli-
tude soliton. Now E0 = 0 becomes a pure midgap state
occupied by a single electron; thus the soliton carries
the electronic spin s=1/2. Curiously, the electric charge
is zero rather than e, being compensated by the dilata-
tion of electronic wave functions of the filled band. That
can be interpreted in a way that the AS is symmetric
with respect to the charge conjugation: it is the adapta-
tion of an electron added to the ground sate of 2M par-
ticles as well as of a hole upon the one of 2M + 2 par-
ticles. Thus, in a 1D system, the AS is a realization of
a spinon, the particle carrying the elementary spin 1/2
but no charge. A theoretical value for the AS energy is
∆AS = 2/π∆0 ≈ 0.65∆0; thus, the energy ∆∗ ≈ 0.35∆0 is
gained by converting the electron into the soliton.

In a quasi-stationary regime the problem can be solved
within the Peierls-Froehlich or the similar chiral Gross-
Neveu models. The spectra are related to the nonlinear
Schroedinger equation, see [4, 37]). The process goes
through the family of "chordus solitons" as illustrated at
Figs.10,11.

FIGURE 10. Soliton trajectories in the complex plane of the
order parameter. Red line - the vertical diameter: the stable
amplitude soliton. Blue line the vertical chord: an intermediate
chordus soliton within a chiral angle θ (black radial lines).
The arrowed arcs show the phase tails adapting to the chordus
soliton evolution.
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FIGURE 11. Selftrapping branches Vn(θ) for chordus soli-
tons with the midgap sate fillings n = 1 and n = 2, and the
energy E0(θ) of the localized split-off state as functions of the
chiral angle θ . The scale is ∆0 = 1

Instantons in ICDW.

Consider the solitons’ creation rate which gives the
tunneling current magnitude [19]. The interchain tun-
neling to the solitonic state takes place in moments
when collective quantum fluctuations create an appro-
priate configuration with the necessary split-off intragap
state. At first sight, one needs to prepare the AS in its
full form, the probability of which is very low; but ac-
tually the spontaneous deformation is more shallow. In-
deed, the energy EAS is yielded from the voltage V by the
interchain transfer of a single electron; hence the split-
off energy level, prepared for this electron by the optimal
fluctuations, must be at E0 = EAS. Therefore, the tunnel-
ing takes place when quantum fluctuations accumulate
the chiral angle such that cosθ/2 = 2/π , which gives
θ ≈ 100◦ rather than 180◦.

Well below the free particle edge 2∆0, the subgap
tunneling current is J1 ∝ t2

⊥ ((U/EAS−2))v/2u , u ¿ vF
where u and vF and are the phase and the Fermi ve-
locities, and t⊥ is the interchain overlap integral. This
law gives the zero current at the threshold. The physical
origin of this suppression comes from emittance of two
phase fronts in the course of the chordus soliton develop-
ment, which drives dynamics to the regime of quantum
dissipation [17]. The phase tails, connecting the time-
dependent chordus values ϕ(t,x → ±0) = ±θ(t) with
the constant ϕ(t,x → ∞) ≡ 0 at large distances, corre-
spond to arcs shown in Fig10.

The 3D long range ordering, which energy scale is
measured by the transition temperature Tc ¿ ∆0, returns
the tunneling to the normal dynamics. Then the peak of
J1(U), instead of zero, will develop in a narrow vicinity
0 <U−2EAS < Tc of the threshold, in a qualitative agree-
ment with experiment [13]. The factor (Tc/EAS)

v/2u will
give the overall reduction of the current in comparison
with the one expected for free electrons.

The bi-electron channel stretches the tunneling spec-
trum down to the small energy ∼ Tc, i.e. even to U = 0
in the 1D limit. The reason is that the particles with
the charge 2e are the phase 2π solitons, see [50, 14]
and Fig.3. The tunneling becomes a process of opposite,
±2π , phase slips taking place simultaneously at adjacent
chains. The intensity is reduced as J2 ∝ t4

⊥ (Tc/EAS)
v/u.
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