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Abstract. We review properties of electron transport in granular materials in the presence of a weak magnetic field. In addition
to longitudinal responses we present results for the Hall conductivity and resistivity. We demonstrate that, at sufficiently
high temperatures when Coulomb blockade effects can be neglected, the Hall resistivity does not depend on the tunnelling
amplitude between the grains and gives information about the interior of the grains. At lower temperatures this quantity
acquires a logarithmic in temperature contribution in all dimensions of the array of the grains. In the limit of very low
temperatures the dependence of the Hall resistivity on temperature is similar to the one for homogeneously disordered metals.
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INTRODUCTION

Hall resistivity (HR) of metals and semiconductors gives
a very important information about their properties. Ac-
cording to the classical Drude-Boltzmann theory HR

ρxy = H/(nec) (1)

does not depend on the mean free path and allows one
to experimentally determine the carrier concentration n.
At sufficiently low temperatures quantum effects (e.g.
Coulomb interaction and weak localization) set in (see,
e.g. [1, 2]), giving corrections to Eq. (1).

Recently, much attention from both experimental and
theoretical sides has been paid to granular systems (see
a review Ref.[3] and references therein). Although var-
ious physical quantities have been calculated in differ-
ent regimes [4], Hall transport in granular matter has not
been addressed theoretically in all these works. The ab-
sence of a theoretical description is apparently one of the
reasons, why measurements of the Hall resistivity have
not become a standard tool for characterization of the
granular metals, although they do not seem to be very
difficult.

Trying to apply the conventional theory of disordered
metals to the granular systems, the following questions
can be asked:

To what extent is the formula (1) applicable for gran-
ular metals? How is the carrier concentration extracted
from Eq. (1) related to the actual carrier concentration
inside the grains? How can quantum effects change HR
of the granular system?

In this talk, theory of the Hall effect in granular system
in the metallic regime is presented and these questions
are answered.

In the metallic regime, when the intergrain tunnelling
conductance GT = (2e2/h̄)gT is large, gT À 1 (further

we set h̄ = 1), the granular system as a whole is roughly
speaking a good conductor and its properties are quite
similar to those of ordinary homogeneously disordered
metals (HDMs). At the same time, the granularity of the
system brings a new physical aspect, namely, confine-
ment of electrons inside the grains. In a system with
“well-pronounced” granularity electron traverses each
grain many times before it escapes to a neighboring grain
due to the tunnelling. This is ensured by the condition
that the tunnelling escape rate Γ is much smaller than the
Thouless energy ET h:

Γ¿ ET h, (2)

or, equivalently, the conductance G0 = (2e2/h̄)g0 of the
grain is much larger than the tunnelling conductance GT :

g0 À gT , (3)

since Γ = gT δ and ET h ∝ g0δ (δ is the mean level
spacing of the grain).

At the same time, the conditions (2, 3), leading to new
physics absent in HDMs, simplify calculations. For ex-
ample, in the limit gT ¿ g0 the main contribution to the

classical resistivity ρ(0)
xx =

(
σ (0)

xx

)−1
comes from the tun-

nel barriers between the grains rather than from scatter-
ing on impurities inside the grains and the longitudinal
conductivity (LC) equals

σ (0)
xx = GT a2−d , (4)

where a is the size of the grains and d is the dimension-
ality of the system.

Formally, the conditions (2, 3) enable one to consider
only the zero space harmonics for phases and potentials
inside the grains [4, 3]. Therefore when studying the lon-
gitudinal transport one may neglect electron dynamics
inside the grains, which is a significant simplification.



FIGURE 1. Granular system and classical picture of Hall
conductivity. The Ohmic current Iy = GTVy running through the
grain in the y direction causes the Hall voltage drop VH = RH Iy
between its opposite banks in the x direction. In the left part, a
diffuson giving the main contribution into the Hall conductivity
is represented

For the Hall transport, however, the situation appears
to be more complicated. The Hall current originates from
the transversal drift in crossed magnetic and electric
fields inside the grains. From simple classical considera-
tions (Fig. 1) one obtains, that the Hall conductivity(HC)
σ (0)

xy in the leading in gT /g0 order is

σ (0)
xy = G2

T RHa2−d . (5)

where RH is the Hall resistance of the grain. The Hall
resistance RH should be obtained from the solution of
a classical electrodynamics problem for the distribution
of the electric potential inside the grain. We come to
the situation when one is forced to take the intragrain
electron dynamics into account, no matter how well the
condition Eq. (3) is satisfied. In other words, the zero
space harmonics approximation is no longer suitable for
description of the Hall transport and one should take into
account higher harmonics.

However, purely classical approach to the problem
based on the classical electrodynamics, giving a quick
answer Eq. (5), does not allow to include into con-
siderations quantum effects (such as the screening of
the Coulomb interaction and the weak localization) that
come into play at sufficiently low temperatures and can
significantly affect transport properties.

In this paper we review results obtained by a method
based on diagrammatic technique that allowed us to take
the intragrain electron dynamics into account by consid-
ering non-zero modes of standard two-particle propaga-
tors (“diffusons”) inside the grain. The suggested proce-
dure accounts for the finiteness of the ratio gT /g0 and
reproduces the solution of the classical electrodynam-
ics problem for the conductivity of a granular medium.
The generality of our approach allows us, in principle, to
study both LC and HC of the granular system for arbi-
trary ratio gT /g0 and for arbitrary type of the intragrain

electron dynamics, either ballistic or diffusive. Non-zero
modes of two-particle propagators are eventually related
to the longitudinal G−1

0 and Hall RH resistances of the
grain. We apply our method to the problem of Hall trans-
port for which considering intragrain dynamics is in-
evitable. Neglecting quantum effects, we do recover the
classical formula Eq. (5). Diagrammatic approach allows
us to include quantum effects of the Coulomb interac-
tion and weak localization straightforwardly into the de-
veloped scheme. We study the influence of the Coulomb
interaction on HC and HR by calculating first order cor-
rections. A more detailed description of our work can be
found in the publications [5].

MODEL

We consider a quadratic (d = 2) or cubic (d = 3) lattice
of equal in form and size metallic grains coupled to each
other by tunnel contacts (Fig. 1). At the same time, they
may be different microscopically, which means that the
grains may have different impurities on the surface and
inside them.

To provide more explicit results and simplify the cal-
culations we assume that the intragrain electron dynam-
ics is diffusive, i.e, the bulk mean free path l in the grains
is much smaller than the size a of the grain, l ¿ a. In this
case details of electron scattering off the grain boundary
are irrelevant. However, our approach is also perfectly
applicable to the case of ballistic (l ∼ a) intragrain dis-
order, when the surface scattering becomes important.
The main results are valid for both diffusive and ballistic
grains.

In the metallic regime, gT À 1, quantum effects of the
Coulomb interaction can be considered as a perturbation
with the small parameter 1/gT .

We write the Hamiltonian describing the system as

Ĥ = Ĥ0 + Ĥt + Ĥc. (6)

In Eq. (6), the first term Ĥ0,

Ĥ0 = ∑
i

∫
driψ†(ri)

[
ξ

(
pi− e

c
A(ri)

)
+U(ri)

]
ψ(ri),

(7)
is the Hamiltonian of isolated grains, ξ (p) = p2/(2m)−
εF , A(ri) is the vector potential describing uniform mag-
netic field H = Hez directed along the z axis, U(ri)
is the random disorder potential of the grains, i =
(i1, . . . , id) ∈ Zd is an integer vector numerating the
grains. The integration over ri is performed over the vol-
ume of the grain i. Since we do not deal with spin-related
phenomena in this paper, we omit spin indices of the op-
erators ψ(ri). Accounting for spin degeneracy in calcula-
tions is simple: each electron loop comes with the factor



2. We consider white-noise disorder and perform averag-
ing using Gaussian distribution with the variance

〈U(ri)U(r′i)〉U =
1

2πντ0
δ (ri− r′i), (8)

where ν is the density of states in the grain at the Fermi
level per one spin projection.

The tunnelling Hamiltonian Ĥt in Eq. (6) is given by

Ĥt = ∑
〈i,j〉

(Xi,j +Xj,i) (9)

where Xi,j is the operator describing tunnelling from the
grain j to the grain i, the summation is taken over the
neighboring grains connected by a tunnel contact, such
that each contact is counted only once.

For studying Hall effect the geometry of the grains and
contacts is essential, therefore we write the tunnelling
operators Xij in the coordinate representation:

Xi,j =
∫

dsidsj t(si,sj)ψ†(si)ψ(sj), (10)

where the integration is carried out over two surfaces of
the contact: one of them (si) is in the i-th grain, whereas
the other (sj) in the j-th grain. Such a form implies that
the tunnelling occurs from a close vicinity of the contact
but not from the bulk of the grain. This is a natural
assumption, because we consider the limit of a good
metal in the grains, such that the electron wave length is
short. Fast oscillations of the wave functions in the grains
result in a fast decay of the overlap of the wave functions
of different grains outside the contacts. Since Ĥ†

t = Ĥt ,
we have X†

i,j = Xj,i and t∗(si,sj) = t(sj,si).
The amplitudes t(si,sj) in Eq. (10) describe probabil-

ity of the electron tunnelling from a point sj to another
point si on the other side of the contact. It is natural to as-
sume that the electrons effectively tunnel from the point
sj to the points si in the vicinity of sj of atomic size only.

Therefore t(si,sj) should decay rapidly on atomic
scale as a function of si − sj. The tunnelling amplitude
t(si,sj) can fluctuate as a function of si for fixed si− sj
due to irregularities of the contact on atomic scale.

To effectively model this behavior of the tunnelling
amplitudes we will consider t(si,sj) as Gaussian random
variables and average over them with the variance

〈t(si,sj)t(sj,si)〉t = t2
0 δ (si− sj), (11)

where δ (si − sj) is an atomic scale δ -function on the
contact surface, t2

0 has the meaning of the tunnelling
probability per unit area of the contact.

The assumption of the short electron wave length en-
ables us to neglect contributions coming from the regular
parts 〈t(si,sj)〉t of the tunnelling amplitudes.

The third term in Eq. (6) stands for the Coulomb in-
teraction between electrons. In principle, one has to start
with the bare Coulomb interaction between the electrons

Ĥc =
1
2 ∑

i,j

∫
dridrj ψ†(ri)ψ†(rj)

e2

|ri− rj|
ψ(rj)ψ(ri).

(12)
Proceeding with the calculations one has to take into
account the screening of the Coulomb interaction by
electron motion. One should distinguish between the in-
tragrain and intergrain electron motion. In the static
limit, one may model the Coulomb interaction, Eq. (12),
by an effective charging energy Eij. In this approxima-
tion, one considers the interaction of the total charges
of the grains. Accounting for the tunnelling leads to a
screened form of the charging energy interaction [6],
which is sufficient for studying intergrain transport.
However, coordinate-dependent interaction modes in-
side each grain arising from the intragrain motion are
necessary to get the correct classical expression for the
“bare” (without interactions) Hall resistance RH of a sin-
gle grain.

RESULTS

The model introduced in the previous section was studied
using a diagrammatic technique developed for the gran-
ular systems. The details of this method can be found
in Refs. [5]. In principle, the diagrams are analogous
to those used for description of homogeneously disor-
dered metals [1, 2], although specifics of the granularity
is definitely important. One should distinguish between
diagrams containing expressions oscillating at the Fermi
length in the space and those that vary in space smoothly.
Only the latter give an essential contribution into the con-
ductivity. Several examples of such diagrams are repre-
sented in Fig. 2

We perform calculations for magnetic fields H such
that ωHτ0 ¿ 1, where ωH = eH/mc is the cyclotron
frequency and τ0 is the electron scattering time inside
the grain. Since the effective mean free path l = vF τ0
does not exceed the grain size a, and typically a ≈ 10−
100nm, the condition ωHτ0 ¿ 1 is well fulfilled even for
experimentally very high fields H. We also assume that
the granularity of the system is “well-pronounced”, i.e.
the conditions, Eq. (2, 3), are satisfied.

First, we neglect quantum effects of the Coulomb in-
teraction and obtain Eq. (5) for Hall conductivity σ (0)

xy in
the lowest non-vanishing order in gT /g0. This result ob-
tained by diagrammatic methods is of completely clas-
sical origin provided the tunnelling contact is viewed as
a surface resistor with conductance GT . The HR of the



FIGURE 2. Diagrams for the current-current correlation function. “Prohibited” diagrams (a) and (b) contain oscillating at Fermi
length λF functions, which after the integration of the contacts surfaces give 0. (c) The only type of “allowed” diagram, that does
not contain oscillating functions and gives nonvanishing contribution.

system, following from Eq. (4, 5),

ρ(0)
xy =

σ (0)
xy

(σ (0)
xx )2

= RHad−2 =
H

n∗dec
(13)

is given by the Hall resistance of a single grain RH that
depends on the geometry of the grain but not on the
intragrain disorder.

Eq. (13) defines the effective carrier density n∗d of the
granular medium. For a three-dimensional (3D) (d = 3,
many granular layers) array n∗3 = An differs from the
electron density n in the grain by a numerical factor A,
0 < A≤ 1, determined by the grain geometry. For grains
of a simple geometry (e.g. having reflectional symmetry
in all three dimensions) this factor is given by the ratio of
the largest cross section area S to the cross section area
of the lattice cell a2: A = S/a2. So, A = 1 for cubic grains
(S = a2), and A = π/4 for spherical grains (S = πa2/4).
For a two-dimensional(2D) (d = 2, granular monolayer)
array the 3D result must be multiplied by the thickness
of the layer a: n∗2 = aAn.

The result, Eq. (13), for the Hall resistivity ρ(0)
xy is quite

universal. It is valid even if 1) the tunnelling conduc-
tances GT fluctuate from contact to contact: HR is sim-
ply independent of the distribution of GT . 2) the mean
free path l fluctuates from contact to contact. Therefore
Eq. (13) is applicable to real granular arrays where such
fluctuations are always present.

Next, we calculate the first-order correction to HC
σ (0)

xy , Eq. (5), due to Coulomb interaction. We find sig-
nificant corrections for temperatures T < gT Ec not ex-
ceeding the inverse RC time gT Ec of the system (Ec =
e2/a is the charging energy of the grain), whereas for
T > gT Ec the relative corrections are of the order of 1/gT
or smaller.

Three types of corrections to HC can be identified:

σxy = σ (0)
xy +δσTA

xy +δσEC
xy +δσAA

xy (14)

The first one, δσTA
xy , can be attributed to the renormaliza-

tion of the individual tunnelling conductances GT (tun-
nelling anomaly (TA) [1, 8, 9]) in the granular medium
and has the form:

δσTA
xy

σ (0)
xy

=− 1
πgT d

ln
[

gT Ec

max(T,Γ)

]
. (15)

This correction renormalizes the tunnelling conduc-
tances GT in Eq. (5) but does not affect the Hall resis-
tance of the grain RH .

The second correction δσ EC
xy corresponds to the pro-

cess of virtual electron diffusion through the grain:

δσEC
xy

σ (0)
xy

=
cd

4πgT
ln

[
min(gT Ec,ET h)

max(T,Γ)

]
. (16)

where cd is a numerical factor. Contrary to δσTA
xy , the

correction δσEC
xy is suppressed at temperatures greater

than the Thouless energy of the grain ET h. Physically, it
is analogous to the elastic cotunneling (EC)[10] process
for weakly coupled grains.

For T Γ both the corrections are lnT -dependent. This
dependence saturates at temperature T ∼ Γ, such that
both δσTA

xy and δσEC
xy remain logarithmically large con-

stants at T < Γ.
These two corrections are specific for granular sys-

tems. They arise from spatial scales of the order of the
grain size a and are absent in homogeneously disordered
metals (HDMs). The logarithmic form of the corrections
is due to the screened Coulomb interaction in granular
systems obtained in [6]. They have the same functional
form in 2D and 3D but the coefficients are not universal,
being lattice-dependent: 1/d and cd are the results for the
cubic (3D) or quadratic (2D) lattice, respectively, and we
assume these lattice symmetries in our calculations.

The third correction δσ AA
xy is analogous to the one

present in HDMs. It might be significant at T ¿ Γ only,
when the thermal length LT = a

√
Γ/T À a exceeds the



size of the grain (Γa2 is the effective diffusion coefficient
at scalesÀ a). However, we find that this correction van-
ishes identically due to the symmetry in quasimomentum
space both in 2D and 3D:

δσAA
xy = 0 (17)

It can be instructive to compare the results for a granu-
lar system with those for a HDM. For the quantities aris-
ing from spatial scales exceeding the size of the grain a
one expects the correspondence, because at such scales
the microscopic structure of the system becomes irrele-
vant.

Indeed, the result Eq. (17) for δσAA
xy agrees with the

one obtained for HDMs in Refs. [7].
The quantity directly measured in experiments is the

Hall resistivity

ρxy =
σxy

σ2
xx

= ρ(0)
xy +δρxy, (18)

where ρ(0)
xy is the bare HR, Eq. (13), and δρxy is the

Coulomb interaction correction,

δρxy

ρ(0)
xy

=
δσxy

σ (0)
xy

−2
δσxx

σ (0)
xx

(19)

The interaction corrections to LC were studied in Refs.
[4, 3] and the following result has been obtained:

σxx = σ (0)
xx +δσTA

xx +δσAA
xx . (20)

(δσTA
xx and δσAA

xx correspond to δσ1 Eq. (2b) and δσ2
Eq.(2c) in Ref. [3], respectively). The correction δσTA

xx is
due to the tunnelling anomaly and renormalizes the tun-
nelling conductance GT in Eq. (4). Its Hall counterpart
is δσTA

xy . The correction δσAA
xx is analogous to that for

HDM first obtained by Altshuler and Aronov(AA) [1].
Its Hall counterpart is δσAA

xy . The AA correction does not
diverge at large scales in 3D, and is significant in 2D at
temperatures T ¿ Γ [3]:

δσAA
xx

σ (0)
xx

=− 1
4π2gT

ln
Γ
T

, T ¿ Γ,d = 2 (21)

Since the TA effects lead to the renormalization of the
tunnelling conductance GT only, it cannot affect the HR
ρ(0)

xy , Eq. (13), that does not contain GT .
Indeed, we have

δσTA
xy

σ (0)
xy

= 2
δσTA

xx

σ (0)
xx

(22)

and the correction to HR from TA effect equals zero.
Therefore, the total correction δρxy to HR is

FIGURE 3. Temperature dependence of the total correction
to Hall resistivity δρxy(T ) = δρEC

xy (T )+δρAA
xy (T ), Eq. (23).

δρxy

ρ(0)
xy

=
δσEC

xy

σ (0)
xy

−2
δσ AA

xx

σ (0)
xx

, (23)

where δσ EC
xy is given by Eq. (16), and δσ AA

xx , Eq. (21),
is significant in 2D at T ¿ Γ. In a wide tempera-
ture range Γ < T < min(gT Ec,ET h), the essential T -
dependent correction comes both in 2D and 3D from EC
effect, Eq. (16), only:

δρxy

ρ(0)
xy

=
δσEC

xy

σ (0)
xy

=
cd

4πgT
ln

[
min(gT Ec,ET h)

T

]
. (24)

The temperature behavior of δρxy, Eq. (23), is shown
in Fig. 3.

Another effect occurring at similar temperatures is
weak localization (WL). The WL corrections to LC were
studied in Refs. [11, 12, 13]. In 2D, the essential log-
arithmic contribution arises from spatial scales greater
than the grain size a, when the inverse dephasing time
is small, 1/τφ < Γ (if 1/τφ ∝ T/gT [11, 12], this corre-
sponds to T < TWL ≡ gT Γ). However, we find [5] that the
first-order in 1/gT WL correction to HR vanishes identi-
cally both in 2D and 3D in correspondence with the result
for HDMs [14, 7, 15]:

δρWL
xy = 0. (25)

Therefore weak localization effects do not change our
results, Eqs. (13, 23), for HR.

Now we shortly summarize our findings. At tempera-
tures T > min(gT Ec,ET h) the Hall resistivity ρxy = ρ(0)

xy
is given by Eq. (13) and is independent of both the intra-
grain and tunnel contact disorder. Measuring ρxy at such
T and using Eq. (13) one can extract its effective car-
rier density n∗d that is an important characteristics of the
granular system.

At temperatures Γ < T < min(gT Ec,ET h), the
Coulomb interaction leads to lnT -dependent corrections
to the Hall resistivity ρxy. Comparison of Eqs. (13, 23)



with experimental data may serve as a good check of
the theory developed here. The temperature dependence
of the total correction to the the Hall conductivity is
represented in Fig. 3

DISCUSSION

In conclusion, we presented theory of the Hall conduc-
tivity of granular metals. In spite of its importance this
question has not been addressed before. It turned out that
considering only zero intragrain space harmonics that
was very successful in describing the longitudinal con-
ductivity [4, 3] is not sufficient for computation of the
Hall conductivity and we considered also higher harmon-
ics. Proceeding in this way we have shown that at high
enough temperatures the Hall resistivity is given by the
classical expression, from which one can extract the ef-
fective carrier density of the system. At lower temper-
atures, charging effects give a logarithmic temperature
dependent contribution to the Hall resistivity that has the
form of Eq. (24).

We emphasize, however, that Eq. (24 gives the first
correction to the resistivity and the result is only valid
when this correction is small. Therefore, the result of the
calculation for the Hall conductivity (resistivity) is less
accurate than the one obtained for the longitudinal con-
ductivity in Ref. [4] using a renormalization group anal-
ysis. In the latter method, the logarithmic contribution
could become very close in its value to the main part. In
order to reach similar accuracy when calculating the Hall
conductivity one should find a way to write proper renor-
malization group equations. This is not easy using the
present diagrammatic approach and more sophisticated
methods are needed.

The logarithmic dependence ρxx = a + b lnT of gran-
ular metals has been observed experimentally [16], and
ρxy can also be measured (see e.g. [17, 18]). The authors
of Ref. [17] reported that HR ρxy of their granular sam-
ples was independent of annealing temperature, although
the latter did change the grain size a and LR ρxx (i.e. GT ,
see Eq. (4)). This fact supports our result Eq. (13) for
ρ(0)

xy . Our theory may also be applied to indium tin ox-
ide(ITO) materials (see e.g. [19]).

We hope that more experiments on this subject will
be done in the nearest future and that the measurement
of the Hall resistivity will evolve into a very important
method of characterization of the granular materials.
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