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Abstract. We study suppression of superconductivity by disorder ind-wave superconductors, and predict the existence of (at
least) two sequential low temperature transitions as a function of increasing disorder: ad-wave tos-wave, and then an s-wave
to metal transition. This is a universal property of the system which is independent of the sign of the interaction constant in
thes-channel.
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Generally the order parameter in superconductors is a
function of two coordinates and two spin indices. Classi-
fication of possible superconducting phases in crystalline
materials was done in [1, 2]. A majority of low-Tc crys-
talline superconductors have a singlet order parameter
with s-wave symmetry. It does not change its sign under
rotation, and in the isotropic case can be approximated
by a complex number∆s(r) = ∆(r , r). However, over the
last decades a number of superconductors have been dis-
covered in which the order parameter changes sign un-
der rotation. A notable example is HTC superconduc-
tors, where in the absence of disorder the order parame-
ter has singletd-wave symmetry [4, 3]:∆(r − r ′) changes
sign under rotation byπ/2, and consequently∆(r , r) = 0.
This means that the Fourier transform∆(k) changes its
sign under aπ/2 rotation as well, as is shown schemat-
ically by the rosettes in Fig.1. Since the sign of∆(k) in
crystallined-wave superconductors depends on the di-
rection of the wave vectork, they are much more sen-
sitive to disorder thans-wave superconductors: at tem-
peratureT = 0, d-wave superconductivity gets destroyed
when the electron mean free pathl is of the order of the
zero temperature coherence length in a pure supercon-
ductor, l ∼ l0 = 1.78ξo ≫ 1/kF . HerekF is the Fermi
wavelength. This is in contrast with the case ofs-wave
superconductors, where according to the Anderson the-
orem the superconductivity is destroyed at much higher
level of disorder, whenl ∼ 1/kF . The fate of thed-wave
superconductors atl < ξ0 depends on the sign of the in-
teraction constantλs in the s-wave channel. If the inter-
actionλs in the s-wave channel is attractive, but weaker
than the attraction in thed-wave channel|λs|< |λD|, then
at weak disorder, (l > ξ0), the superconducting order pa-
rameter has d-wave symmetry, while atl < ξ0 the disor-
der destroys thed-wave superconductivity and the sys-
tem undergoes a phase transition into an s-wave super-

conducting state. (See, for example, [5]).
In this article we consider a more interesting case,

in which the interaction in thes-channel is repulsive at
strong enough disorder 1/kF ≪ l ≪ ξ0 the system is in
normal state. We predict at least two low- temperature
phase transitions: ad-wave to s-wave, and then ans-
wave to normal metal transition. Qualitatively the phase
diagram of disorderedd-wave superconductors is shown
in Fig.1. Let us first discuss the definition ofs- andd-
symmetries in bulk disordered systems. Before averag-
ing over random realizations of disorder, the system does
not possess any particular spacial symmetry at all. How-
ever in bulk samples, the symmetry is restored upon con-
figuration averaging. We can think of several different
definitions of the global symmetry of the order param-
eter: a) An operational definition is provided by the re-
sult of a phase sensitive experiment, such as the corner
SQUID experiment, for example, [3, 4]. b) The quantity
∆(r , r ′) can be characterized as havingd-wave ors-wave
symmetry. Here the over-line stands for the averaging
over the sample volume. c) A globallys-wave compo-
nent of the order parameter can be defined in terms of
the locals-component of the anomalous Green function
F (r = r ′) ≡ F (s)(r). If we defineP± to be the volume
fraction of a sample whereF (s)(r) has a positive or neg-
ative sign, respectively, then the system has an s-wave
component if(P+ −P−) 6= 0. These definitions may be
not equivalent under all circumstances. However, for the
most part, we will deal with the interval of parameters
in which all these definitions are approximately inter-
changeable.

It is important to realize that it is inevitable near crit-
icality to have a situation in which the local pairing in
disordered superconductors is “d-wavelike” and yet the
global superconductivity has s-wave symmetry. Thed-
wave tos-wave transition can be understood at the mean



field level. The electron mean free path is an average
characteristic of disorder. Let us introduce a "local" value
of the mean free pathl(r) averaged over a size of or-
derξ0. In the region of parameters whered-wave super-
conductivity is sufficiently suppressed by disorder, the
spatial dependence of the order parameter can be visual-
ized as a system of superconductingpuddles with anoma-
lously large values of the order parameter, which are con-
nected by Joshepson links through non-superconducting
metal. The superconductivity inside the puddles may be
enhanced because either the electron interaction con-
stant, or the mean free path in the puddles (or both) may
be larger than their average values.

Let us assume that the distance between the puddles
is larger than both their size and the mean free path. In
this case the system is already in a state with the "global
s-wave" symmetry. Its origin is illustrated qualitatively
in Fig.2, where a system of superconduting puddles of
arbitrary shape embedded into a metal is shown. The or-
der parameter inside the puddles hasd-wave symmetry,
and the orientation of the gap nodes is assumed to be
pinned by the crystalline anisotropy. In ad-wave super-
conductor, in addition to an overall phase of the order
parameter, there is an arbitrary sign associated with the
internal structure of the pair wave function. Specifically,
we adopt a uniform phase convention such that when the
phase of the order parameterφi = 0, this implies∆(r , r ′)
in puddlei is real and has its positive lobes along they
axis and its negative lobes along thex axis.

The inter-puddle Joshepson coupling originates from
the proximity effect in the normal metal. It is char-
acterized by the anomalous Green functionF (r , r ′) ≡
F(r , r ′,t = t ′), which is connected to∆(r , r ′) by the in-
teraction constant. Due to the lack of symmetry at the
boundary of a puddle, ans-wave componentF (r =

r ′) = F (s)(r) 6= 0 of the anomalous Green function is
generated in the neighboring metal. At a distance from
the superconductor-normal metal boundary larger than
the elastic electron mean free path the anomalous Green
function becomes isotropic. In other words, only thes-
componentF (r = r ′) = F (s)(r) survives. It is this com-
ponent that propagates between far separated puddles
and determines the Joshepson coupling.

The sign ofF (s)(r) at a normal metal-superconductor
boundary, is determined by the sign of thed-wave order
parameter in thek-direction perpendicular to the bound-
ary. Therefore it changes along the boundary of a puddle.

At a distance from an individual i-th puddle larger than
its size and smaller than the distance between the puddles
the quantityF s(r) has a signηi =±1, which depends on
the shape of the i-th puddle. This point is illustrated in
Fig.2a, where the sign of the anomalous Green function
is positive in hatch-marked areas, and negative outside of
these areas.

If the distance between puddles is larger than their
size, the sign of the Joshepson coupling energyEJos is
determined by a productηiη j,

EJos =
∑

i6= j

ηiη jJ
(s)
i j cos(φi −φ j). (1)

Here indexesi, j label puddles,J(S)
i j > 0. Eq. 1 represents

the Mattis model, which is well known in the theory
of spin glasses [11]. The ground state of this model
corresponds to

cos(φi) = −ηi. (2)

Thus the distribution of cos(φi) between puddles looks
completely random as it is shown in Fig. 2a. However
the system is not a glass because it’s ground state has
a hidden symmetry. In other words if the distances be-
tween puddles are bigger than the characteristic size of
the puddles,R, the Josephson coupling between pud-
dles inevitably favors globallys-wave superconductivity,
even though the order parameter on each puddle looks
locally d-wave -like. It is obvious that at a high concen-
tration of puddles, the order parameter in the ground state
has globald-wave symmetry (See Fig. 2b.).

At intermediate distances, the situation is more com-
plicated. Areas with different signs ofF (s)(r) mix in
a random fashion. We argue that the most important
aspects of this complex situation can be modelled by
adding to the right hand side of Eq. 1 a term

∑

i6= j

J(d)
i j cos(φi −φ j), (3)

whereJ(d)
i j > 0 characterizes the strength of the exchange

interaction between thed-wave components of the order

parameter. Typically, at small|r i − r j|, J(d)
i j > J(s)

i j , but

at large|r i − r j| the coupling strengthJ(s)
i j decays more

slowly thanJ(d)
i j . Herer i are coordinates of the puddles.

Thus it is likely that in this intermediate region the sys-
tem may exhibit spin glass features and/or coexistence
of d-wave ands-wave ordering. In this article, however,
we will not further explore this fascinating but complex
aspect of this problem.

To quantify the picture presented above one has to
compute the Josephson coupling between a pair of far
separated puddles. Since the time that it takes for elec-
trons to travel between puddles is shorter than the charac-
teristic time of fluctuations of the order parameter on in-

dividual puddles, one can calculateJ(s)
i j using the mean-

field Usadel equation for the configuration-averaged

anomalous Green function〈F (s)
ε (r)〉 ≡ −isinθ (ε, r) in

the metal,

Dtr

2
∂ 2

r θ (ε, r)+ iε sinθ (ε, r) = 0. (4)



Here Dtr is the transport diffusion coefficient of elec-

trons in the metal,F (s)
ε (r) is the Fourier transform of

F (s)[r ,(t−t ′))], ∆(s) = λ (s)F (s)(r), and the brackets〈...〉
indicate averaging over random scattering potential be-
tween the puddles at a given shape of the puddles. The
only, but crucial difference with the conventional case of
s-n junctions (See, for example, [13, 14]), is the boundary
conditions for Eq. 4 at the normal-superconductor sur-
face, which determine the sign ofηi.

For the case when the size of the puddle is larger than
the coherence length and the Andreev reflection on the
puddles is effective the boundary conditions for Eq.4
on the d-n boundary have been derived in Ref. [12].
Since the relevant energy for computing the Josephson
coupling,ε ≈ Dtr/|r i − r j|2, is much smaller than the
value of the order parameter in the puddles, the bound-
ary condition forθ (r ,ε) is independent ofε and de-
pends only on the angle between the unit vector paral-
lel to the direction of a gap nodên∆ and a unit vector,
n̂(r), normal to the boundary at pointr at the surface,
: θs(ε, r) = f [α(r)], sin[α(r)] ≡ n̂(r) · n̂∆. Here f (α)
is a smooth, approximately odd and periodic function,
f (α) ≈ − f (−α), f (α) ≈ f (α + π), which grows from
f (α) ≈ 0 at α = 0, to f (α) ≈ ±ζ for α = π/4, where
ζ ∼ 1. Solving Eq. 4 with these boundary conditions,
and using the standard procedure of calculation of the
Joshepson energy we get

Js
i j ∼C

V
|r i − r j|D

exp(−|r i − r j|
LT

)

ηi = sign

{
∫

i
ds f (α)

}

(5)

andC ∼ Ge f f
Dtr
R̄2 , V is the puddle volume, the integral is

taken over the surface of theith puddle, andGe f f is the
conductance of a metal of a size of order of the size of
the superconducting puddle. In this case the magnitude
of the s-component of the order parameter generated at
the superconductor-normal metal boundary is of order of
the magnitude of thed-wave component. Thus it is not

surprising that the value ofJ(s)
i j in Eq. 1 turns out to be of

the same order as in the case of SNS junction.
If the distribution function of the mean-free paths is

unbounded, and with certain probabilities one can find
arbitrary large values ofl(r), the mean field supercon-
ducting solution always exists. However, if the puddle
concentration is small enough, the transition from the
state with globals-wave symmetry to the normal metal
is triggered by a competition between the inter-puddle
Joshepson coupling energy and the thermal (or quantum)
fluctuations. Thermal fluctuations destroy the coherence
between two puddles whenJi j ∼ kT , which gives us an
expression for the critical temperatureTc of the s-wave

T

superconducting glass?Tc0

D-wave S-wave

superconducting glass?

normal metal

Tc1
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FIGURE 1. Schematic phase diagram for the case when
d-wave superconducting state is destroyed as a function of
increasing disorder strength.

superconductor-metal transition

Tc ∼
CV
RD , (6)

whereR is the inter-puddle distance.

We would like to stress that the existence of thes-wave
superconducting phase is a generic property of the sys-
tem because the long-range nature of the decay of Eq. 5
ensures that near the superconductor-normal metal tran-
sition and at small enough temperatures the supercon-
ducting puddles are separated by a distance larger than
their size.

In principle, the situation described above can be real-
ized when grains ofd-wave superconductors are embed-
ded into a normal metal artificially. In random systems
the critical point can be identified by finding the set of
“optimal puddles" which lie on the critical links of “the
percolating cluster". In this case the properties of thes-
wave phase and the dependence of the critical tempera-
ture Tc on the parameters of the system depends on de-
tails of the distribution function of the disordered poten-
tial. To illustrate the situation we consider here a simple
model where the mean free partl(r) is a random function
of coordinates with a Gaussian distribution characterized
by an averagēl, a varianceσ l0, and a correlation length
which is of orderξ0. To be concrete, we consider the 2D
case. Then the distance between the puddles becomes of
order of their size, the amplitude of fluctuations of the
order parameter becomes of order of the average, and the
system has a transition to thes-wave state whenl ∼ lc1
andT < Tc1

l̄c1− l0 ∼ σ2l, Tc1 ∼ σTc0. (7)

HereTc0 is the critical temperature of a pured-wave su-
perconductor. Ifl0− l̄ ≫ lσ2 the distance between "the
optimal puddles" is much bigger than their size. We can
characterize such puddles by a value of the mean free
path lopt > l0 averaged over the volume of the puddle.
In this case∆opt ∼ ∆0l0/(lopt − l0)1/2 ≪ ∆0, the size of
the puddle is of order of the zero temperature coher-
ence lengthξopt ∼ ξ0l/(lopt − l0) ≫ ξ0, and the char-
acteristic distance between the puddles is of order of



ξopt exp[(lopt − l̂)2/2σ2l̄(lopt − l0)]. Here∆0 is the mag-
nitude of the order parameter in a pured-wave supercon-
ductor atT = 0. This expression has a minimum at(lopt −
l0)∼ (l0− l̄), and thereforeRopt ∼exp[(l0− l̄)/l0σ2]. Us-
ing Eq. 6 we get

Tc ∼ Tc0σ exp[− (l0− l̄)
l0σ2 ]. (8)

At very small values ofTc the phase transition be-
tween thes-wave superconducting phase and the normal
metal is triggered by quantum fluctuations of the order
parameter. We now outline the procedure for determina-
tion of the location of the quantum critical point under
these circumstances. Quantum fluctuations necessarily
destroy the superconducting order in an isolated puddle.
Thus, although the superconducting susceptibility of an
individual puddle,χi, can, under some circumstances, be
large, the transition to the globally phase coherent super-
conducting state is ultimately triggered by the Josephson
coupling between puddles. Let us introduce a dimension-
less coupling between two puddles,i and j,

Xi, j ≡ χiJi, jχ jJ j,i. (9)

Two puddles fluctuate essentially independently of each
other if |Xi, j| ≪ 1, and they are phase locked to each
other if |Xi, j| ≫ 1. The transition to a globally phase
coherent state occurs as a function ofl̄ at the critical
value, l̄ = lc1(T = 0), at which an infinite cluster of
puddles is coupled together by links withXi, j ∼ 1. For an
ordered array of puddles, the quantum superconductor-
metal transition was discussed in this light in [16, 17].

The expression for the susceptibility of a puddle de-
pends on its radius. It is possible to show that the char-
acteristic size of the optimal puddlesξopt ∼ ξ0l/(lopt −
l0) is of order of the superconducting coherence length
which corresponds to the value order parameter in the
puddle. In this case the susceptibility of superconduct-
ing puddles was investigated in many papers (See for ex-
ample [19, 20, 21, 22, 23, 24, 16]). To be concrete we
consider 2D case where [16]

ln χ/∆0 ∼
√

G (10)

whereG ≫ 1 is the conductance of the film per square.
Thus in a generic situation in the neighborhood of the

transition, rare puddles with exponentially large suscep-
tibilities play a special role. Specifically, the optimal pud-
dles are those in whichl lies in an interval,lopt −∆lopt <
l < lopt + ∆lopt . Here both the optimal value,lopt , and
the width of the interval,∆ lopt , are determined by maxi-
mizing the quantityXopt = χ2

optJ
2
opt with respect to these

parameters, whereχopt is the susceptibility of a puddle
with l = lopt , andJopt is the typical value of the Joseph-
son coupling between two nearest-neighbor optimal pud-
dles. Finally we find the critical value oflc1(T = 0) from
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FIGURE 2. A qualitative illustration of the globald-wave to
s-wave transition. Solid lines represent boundaries ofd-wave
superconducting puddles embedded into a normal metal. Hatch
marked areas indicate the areas were thes-wave component
of the anomalous Green functionFs(r , r) is positive. Outside
these areasFs(r , r) is negative. a) The case of small puddle
concentration when the system hass-wave global symmetry. b)
The case of big puddle concentration when the system has a
globald-wave symmetry.

the requirement that, after maximizing,max{Xopt} ≈ 1 .

l0− lc1(T = 0)

l0
≈ Gσ2 < 1 (11)

Thus, a generic feature of the s-n transition is that it
takes place when the distance between optimal puddles
is exponentially large [18].

The cuprate high-temperature superconductors are the
best established example of ad-wave superconductor.
Here, the critical temperature,Tc, is known to vary
strongly as a function of the doped hole concentration,x,
producing two quantum critical points at whichTc van-
ishes: a lower critical doping concentration,x1, on the
“underdoped” side, and an upper critical concentration,
x2, on the “overdoped” side of the phase diagram. On
the underdoped side of the superconducting dome, with
increasing underdoping, these materials frequently ap-
pear to undergo a superconductor to insulator transition
[7, 6, 8]. Thus, the present considerations are not applica-
ble. We assume, some of the more robust of our findings
apply to the cuprates asTc → 0 with overdoping. There
are a number of interesting predictions we can make. 1)
There should be a transition from a globallyd-wave to a
globally s-wave superconducting state at a doping con-
centrationx = x2. (Some evidence of such a transition
may already be present in the experiments of Ref. [9].)
2) In the metallic state withx > x2, the conductivity at
low temperature should diverge asx → x2, the Hall resis-



tance should vanish, and the Weideman-Franz law should
be increasingly strongly violated.
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