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Abstract. The notion of Z2 topological order in two-dimensional resonating-valence-bond systems is reviewed. Using
quantum dimer models as an example, I discuss general properties of the topological order and the resulting vortex-like
excitations (visons). Some connections to theories of frustrated magnetism and of high-temperature superconductivity are
pointed out.
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RESONATING-VALENCE-BOND STATE

The idea of a quantum spin liquid, i.e., a spin system
which does not order in any way down to zero temper-
ature (in two or three dimensions), has been an impor-
tant topic of research in condensed-matter physics since
many years. Under certain conditions, such a state would
imply a novel strongly correlated phase of matter with
unusual low-temperature properties [1], and it has been
sought for both theoretically and experimentally. Obvi-
ous candidates for a quantum liquid phase are so-called
frustrated spin systems, where the signs of interactions
between the spins disfavor any sort of magnetic ordering.
On the other hand, spin-liquid physics has also been pro-
posed to be relevant for high-temperature superconduc-
tivity, where magnetic order is destroyed by the doped
holes [2]. By now, many theories and models have been
constructed for spin liquids [3, 4, 5, 6, 7, 8] and some ex-
periments (e.g., on the herbertsmithite ZnCu3(OH)6Cl2
[9]) seem to indicate a possible spin-liquid state. Never-
theless, up to date, there has been no rigorous argument
for a stable spin-liquid state in a realistic spin model.

The most popular spin-liquid scenario is the so-called
resonating-valence-bond (RVB) state, which has been
proposed for spin-1/2 systems in the two-dimensional
geometry [10], and which has soon found its application
also in the theory of high-temperature superconductors
[2]. Since then, the development of the RVB theory con-
tinued in two parallel lines (with mutual influence): RVB
physics in spin systems and in dimer models on one side,
and the RVB scenario of high-temperature superconduc-
tivity on the other side.

RVB state in spin and dimer systems

In analyzing low-temperature phases of frustrated
magnets, it has soon been realized that spins usually tend
to order either magnetically or as a crystal of singlets.
The RVB-liquid phase of frustrated magnets has mostly
been suggested numerically, without a solid analytic sup-
port (see, e.g., Ref. [11] for a review). A more rigorous
and controllable way to realize the RVB phase is to con-
sider quantum dimer models or other models with an ex-
plicit Z2 gauge symmetry [12]. One of the simplest and
most convenient systems for studying the RVB phase is
the Rokhsar–Kivelson (RK) dimer model [13]. If formu-
lated on the square lattice, it only has the RVB phase at
one point in the space of parameters (corresponding to
a transition between two crystal phases). The excitation
spectrum is gapless at this point, which is a consequence
of a conserved “winding number” for dimer models on
bipartite lattices [14, 15]. On the triangular lattice, how-
ever, there is a finite region of parameters where the RVB
phase is stable with a finite energy gap [16].

While properties of the RVB state in dimer models are
quite well understood (see the sections below), finding a
realistic spin model with a confirmed RVB state remains
a challenging theoretical problem.

RVB state in high-temperature
superconductors

In application to high-Tc superconductivity, the RVB
physics appears in the Gutzwiller-projected construction
of variational wave functions [2]. After the first sys-
tematic application of this method [17], a variety of



FIGURE 1. A schematic view of a RVB state. The electrons
form short-range singlets. The RVB state is a linear combi-
nation of various singlet configurations that preserves all the
lattice symmetries.

works have appeared analyzing low-temperature proper-
ties of the t–J model (a generic model for high-Tc super-
conductors) with the use of variational wave functions
[18, 19, 20]. Those predictions, even for the simplest
version of the model with only nearest-neighbor hopping
and with the only parameter t/J = 3 appear to be qualita-
tively consistent with the commonly observed properties
of cuprates [21]. The low-temperature phases include a
d-wave superconductor [17] with an antiferromagnetic
instability at very low doping [19], in agreement with
the experimental phase diagram. Recently, more detailed
studies have appeared with computations of such quan-
tities as condensation energy, superfluid density, coher-
ence length, quasiparticle spectral weight, Fermi veloc-
ity, etc [22, 23, 24, 25].

Z2 TOPOLOGICAL ORDER AND
VORTEXLIKE EXCITATIONS (VISONS)

The RVB state is usually defined in the following way:
the spins are grouped into singlet pairs, and the ground
state is a linear combination of various singlet configura-
tions (Fig. 1).

Such a state is conjectured to have a Z2 topological
order [26], and its elementary excitations are spin-1/2
spinons and Z2 vortices (visons) [27, 28]. The topolog-
ical order and the vortexlike excitations remain at the
level of conjecture for spin systems, but can be rigor-
ously proven and studied for a simpler type of systems:
dimer models.

Topological order

In dimer models, the spin singlets are replaced by un-
breakable dimers (Fig. 2), and different dimer configu-
rations are orthogonal by definition. Then a new type of
conservation law emerges: for any closed contour, any lo-
cal rearrangement of dimers does not change the parity

FIGURE 2. Dimer models. (a): Replacing singlets by
dimers. The overlap between different dimer configurations is
zero by definition, unlike for singlets. (b): An example of a
dimer configuration. For any (closed) contour, the parity of the
number of intersections with dimers is invariant with respect
to local dimer rearrangement. (c): An example of a local dimer
rearrangement. This elementary rearrangement of two dimers
constitutes the kinetic term in the Rokhsar–Kivelson dimer
model (1).

FIGURE 3. For a cylinder, one chooses a contour connecting
the two edges. The parity of dimer intersections with this
contour distinguishes the two topological sectors: even and
odd.

of the number of intersecting dimers (Z2 index of inter-
section) (Fig. 2) [27, 28]. Note that this conservation law
does not depend neither on the geometry of the lattice nor
on the type of local rearrangement. For bipartite lattices,
an additional conservation law appears, which extends
the symmetry from Z2 to U(1) [14, 15]. In this paper, I
assume that the lattice of available dimer positions is not
bipartite, and therefore I will not consider the U(1) case.

This conservation law leads to the existence of topo-
logical sectors for systems defined on multiply con-
nected domains (cylinder, torus, plane with holes, etc.):
the Hilbert space splits into several disconnected com-
ponents. Assuming the absence of dimer crystallization
(all correlations are exponentially decaying), this further
leads to a topological degeneracy in the thermodynamic
limit (as the system size L tends to infinity) (Fig. 3).

In general, the notion of Z2 topological order in RVB-
type systems may be formulated in the form of two
conditions [29, 30]: on a multiply connected domain, the



0.5 0.6 0.7 0.8 0.9 1
V/t

0

5e-05

0.0001

I(k)

I
v
(B)

I
D
(M)

I
D
(X)

0

0.05

0.1

0.15

∆(k)

∆
v
(B)

∆
D
(M)/2

∆
D
(X)/2

FIGURE 4. A numerical evidence for the second-order crys-
tallization transition in the RK dimer model. Solid squares and
diamonds represent the dimer Bragg peaks at two different
points in the Brillouin zone. Solid circles represent the vison
Bragg peaks (multiplied by 0.01, to be shown on the same
scale). Open circles represent the vison gap, and open squares
and diamonds represent the dimer gaps at the two points in
the Brillouin zone. The horizontal axis is the ratio v/t in the
Hamiltonian (1). From Ref. [35].

degenerate ground states |A〉 and |B〉 should obey:

1. identical local properties: 〈A|X |A〉 = 〈B|X |B〉 in
the limit L → ∞ for any local operator X ;

2. orthogonality: 〈A|X |B〉, again, in the thermody-
namic limit L → ∞ for any local operator X .

Note that the second condition is automatically satis-
fied for dimer models, while the first condition amounts
to the absence of dimer crystallization. In spin systems,
the second condition becomes also nontrivial and can
be approximately related to the absence of spin ordering
[30].

Topological order in the RK dimer model

A typical example of the system with the Z2 topologi-
cal order described above is the Rokhsar–Kivelson dimer
model on the triangular lattice [4, 31]. For dimers on the
triangular lattice, the quantum dynamics is defined by the
Hamiltonian:

HRK = ∑
(
− t | 〉〈 |+ v | 〉〈 |

)
(1)

where the sum is performed over all rhombi containing
two parallel dimers. The kinetic term with the coefficient
t flips the pair of dimers as shown in the bottom panel
of Fig. 2, while the potential term with the coefficient v
assigns a potential energy to such pairs of dimers.

For the special case v = t (the “Rokhsar–Kivelson
point”), the RVB phase is rigorously proven, with the ex-
ponential decay of correlation functions and with the two

FIGURE 5. (a): The point-like visons Vi are defined on the
dual lattice with frustration. (b): For the triangular lattice, the
dual lattice is hexagonal. The frustration may be represented by
the magnetic field of half flux quantum per plaquette

conditions of the topological order (formulated above)
satisfied [32, 31]. An extensive numerical study confirms
a finite region of the RVB phase for the range of parame-
ters 0.83(2) < v/t ≤ 1 [4, 33, 34, 35]. At v/t = 0.83(2),
the RVB phase undergoes a transition to a crystal phase,
with the transition apparently of the second order [36, 35]
(Fig. 4). At v/t = 1, a transition between the RVB phase
and another crystal phase is of the first order.

Vortex-like excitations (visons)

The existence of the topological order on multiply-
connected domains also implies a new type of vortex-
like excitations. In the definition of the topological order,
the contour is chosen to be either closed or connecting
the edges of the domain. If now one takes a contour
Γ connecting two points inside the lattice (connecting
two plaquettes), then the operator of the parity of dimer
intersections with such a contour no longer commutes
with the Hamiltonian. In fact, one can show that this
parity operator can be represented as a product of two
point-like objects:

V1 ·V2 = (−1)NΓ (2)

where NΓ is the number of the dimer intersections with
the contour Γ. The operators V1 and V2 are associated
with the end points of the contour, but they are nonlocal
in terms of dimer operators. They produce a certain type
of vortexlike excitations (dubbed visons) [27, 28]. While
the operators V1 and V2 applied to the ground state do
not produce an eigenstate, they may be dressed by local
dimer operators and translated with a given wave vector
to produce eigenstates of the Hamiltonian of the quantum



dimer model. The operators Vi have the structure of Z2
vortices: they can only be created in pairs in a finite
system, and a product of two such operators can be
expressed locally in terms of dimer operators. So the true
vison eigenstates are the lowest-energy states equivalent
to the states Vi [37].

Note that the operators Vi are defined on the dual
lattice (i.e., on the lattice formed by the plaquettes of the
original lattice) with a frustration (so that the operator
Vi acquires the sign −1 if moved around one site of the
original lattice), Fig. 5. Equivalently, one may think of
a particle on the dual lattice in the magnetic field of
half flux quantum per plaquette of the dual lattice. This
determines the symmetry of the vison excitations and the
structure of its Brillouin zone.

Visons in the RK dimer model

Vison excitations have been studied numerically in the
Rokhsar–Kivelson dimer model. The numerics is espe-
cially simple at the Rokhsar–Kivelson point (at v = t): in
that case, one can use the equivalence between the quan-
tum system in imaginary time and a classical stochas-
tic process [15] and model the quantum dynamics with
a classical Monte Carlo simulation. This approach has
been implemented in the work [37], where the full dis-
persion of vison excitations has been obtained (except for
the high-energy part of the branch, where the visons are
unstable with respect to decay into triples of visons). The
lowest energy of the vison excitations equals 0.089(1) (in
the units of v = t), which is smaller than the lowest en-
ergy of excitations generated by dimer operators. It has
been thus shown that visons constitute the elementary ex-
citations in this RVB state.

The analysis of the vison spectrum has been later ex-
tended away from the RK point, to v/t < 1 (with a more
complicated numerical technique) [35]. It has been found
that the visons continue to be the lowest-energy excita-
tions throughout the RVB phase, and that their energy
decreases (and apparently goes to zero) at the crystal-
lization phase transition around v/t = 0.83(2), see Fig. 4.
Thus the crystallization transition may be described as a
second-order vison condensation, in agreement with the
conjecture of Ref. [36].

RVB PHYSICS IN
GUTZWILLER-PROJECTED WAVE

FUNCTIONS

An interesting and not yet fully resolved question is
to what extent the physics described above (topological
order and vison excitations) survives if one goes back

from dimer models to spin systems. One of the obstacles
is the overlap between various dimer configurations and
non-uniqueness of the decomposition of a spin state in
terms of products of singlets. A promising way around
this difficulty is to consider Gutzwiller-projected wave
functions as prototype states with RVB structure.

The idea of the Gutzwiller-projected construction is
the following [38]: First, one considers a mean-field
BCS-type quadratic Hamiltonian HBCS(χ ,∆) (where χ
and ∆ are the sets of hopping and pairing amplitudes, typ-
ically restricted to a certain symmetry class and involv-
ing only one or several nearest-neighbor types of bonds).
Then the ground state ΨBCS of this Hamiltonian is pro-
jected onto the configurations with no double occupancy
of sites. In addition, the total electron density is fixed ei-
ther by projecting onto a fixed-electron-number sector or
by adjusting a chemical-potential term. This procedure is
called the Gutzwiller projection PG. The resulting wave
function ΨGP = PGΨBCS is considered as a variational
wave function for the physical Hamiltonian Hphys. The
variational parameters χ and ∆ are then adjusted to min-
imize the variational energy 〈ΨGP|Hphys|ΨGP〉.

This variational approach to strongly-correlated
Hamiltonians Hphys has been widely used both for a va-
riety of spin systems [39, 40, 41] and for the t–J model
in the context of high-temperature superconductivity
[17, 18, 21]. Not only provides it a good variational
ansatz for such systems, but it also implies a RVB-type
structure [2]. One is then tempted to ask whether the
argument in Ref. [2] can be promoted to the topological
order and visons, by analogy with the dimer models.
Several developments have been made in this direction.

Topological order in projected wave
functions

To test for topological order, one needs to verify the
two conditions formulated above for the ground states in
different topological sectors. Such states are constructed
variationally by projecting fermionic states with either
periodic or antiperiodic boundary conditions on multiply
connected domains [29]. If one considers an undoped
system (a spin model), such a projection produces the
same spin boundary conditions, regardless of the choice
of fermionic boundary conditions. One can then check
whether the two criteria for the topological order are
satisfied or not (both criteria become nontrivial in this
case).

In Ref. [29], we have performed such a test for several
types of wave functions similar to those used for the t–
J model and for the J1–J2 spin model. We have found
that some of them do not have a topological order, while
some others do. Note that since the mean-field states



ΨBCS used in our study have nodes in the spectrum,
the conditions for the topological order, even if they are
satisfied, hold not with an exponential, but only with a
power-law accuracy for large systems. For example, for
the nearest-neighbor spin correlations we find

〈+|SiS j|+〉− 〈−|SiS j|−〉 ∝ L−α , α ≈ 2 , (3)

where |+〉 and |−〉 are Gutzwiller-projected states with
different fermionic boundary conditions, and L is the
linear system size.

A similar numerical study has been performed later by
another group [42] on a different set of wave functions.
They have also observed that some of the projected wave
functions possess a topological order while others don’t.
However the problem of finding the exact criteria on the
wave function for the appearance of the topological order
is not solved yet: in Ref. [29], we argue that it should be
determined by whether the mean-field ansatz is of the Z2
or of the U(1) type, while in Ref. [42] they claim that it is
the bipartite geometry of the lattice which is responsible
for the presence or absence of topological order in the
projected wave function. Neither of the two conjectures
is solidly proven, and the collection of available numeri-
cal evidence collected in the two papers appear to be in-
consistent with either of the two conjectures. Therefore it
seems necessary to undertake either a more detailed and
systematic numerical study of this problem or to present
a rigorous analytic argument to resolve the issue of topo-
logical order in Gutzwiller-projected wave functions.

GENERALIZATION OF THE RVB
CONSTRUCTION: LOOP PATH

INTEGRAL

An interesting complication arising in the study of topo-
logical order in Gutzwiller-projected wave function is the
presence of nodes in the mean-field state. Those nodes
result in the algebraic topological order. Moreover, the
original argument of Anderson about the RVB nature of
Gutzwiller-projected wave functions [2] is not applicable
to BCS states with nodes (since the resulting singlet am-
plitudes become long-ranged in this case). This issue has
been addressed in Ref. [30], where the RVB structure of
wave functions has been interpreted in terms of the loop
path integral, instead of singlets.

The idea is to consider the “partition function” 〈Ψ|Ψ〉
instead of the wave function |Ψ〉. For all known examples
of RVB states, this normalization of the wave function
has the form

〈Ψ|Ψ〉 = ∑
{Cn}

∏
n

A(Cn) , (4)

where the sum is taken over all possible fully packed
coverings of the lattice by the loops Cn (so that every site

��� ���

FIGURE 6. (a): In the conventional RVB construction, the
loops are given by the overlap of two singlet (dimer) configura-
tions. (b): The topological sectors may be accessed by changing
the sign of the amplitude for loops having a global winding.

belongs to exactly one loop), and A(Cn) is some function
of the loop. This construction obviously generalizes the
expression for the overlap of the conventional RVB states
(built as products of singlets [2]):

A(C) = −2a12a23 . . .ak1 (5)

where ai j are the singlet amplitudes. The minus sign
in the expression for A(C) comes from the fermionic
structure of the RVB construction (a positive sign would
also be possible [43]), and the factor of 2 reflects the
spin multiplicity. The loops are formed by the overlap
of dimer singlets in the bra and ket vectors 〈Ψ| and |Ψ〉
(Fig. 6).

However, the loop-path-integral expression (4) has a
wider range of validity: in fact, all known RVB-like
states can be interpreted in this way. For example,

1. As mentioned above, the RVB state composed
of products of singlets corresponds to the choice
A(C) = −2a12a23 . . .ak1.

2. The ground state of the Rokhsar–Kivelson dimer
model at the RK point (t = v) corresponds to

A(C) =
{

1 for length-two loops
0 otherwise

(6)

3. For Gutzwiller-projected wave functions [30],

A(C) = −TrG12G23 . . .Gk1 , (7)

where Gi j are the BCS equal-time Green functions
(2×2 matrices).

The last example is interesting from the point of view
of the algebraic topological order. Indeed, the topological
order may be formulated in terms of the loop behavior in
the path-integral theory (4). Different topological sectors
may be accessed by assigning a minus sign for globally
winding loops (Fig. 6). The two conditions of topological
order may be qualitatively formulated as (1) loops are
short ranged and (2) loops do not crystallize [30]. The
short-rangedness of loops is however only algebraic in
the example of projected BCS states with nodes. In such



a case, since the Green functions Gi j decay algebraically
(as L−2), the loop size cannot decay faster than that (since
there always exist “direct-flight” loops with long-range
links), but can only decay equally fast or slower than Gi j.
This imposes an upper bound on the convergence of the
topological degeneracy for such projected states in the
thermodynamic limit.

A more accurate analytic description of algebraic
topological order in Gutzwiller-projected wave functions
is still to be completed. Numerical studies indicate that
the close-packing constraint strongly renormalizes the al-
gebraic topological order, as compared to the power-law
decay of the bare Green functions Gi j [30].

RVB STATE IN DOPED SYSTEMS

Finally, it is worth commenting on the fate of topolog-
ical order and of vortex-like excitations in RVB sys-
tems doped with mobile charges (with high-temperature
superconductivity in mind). A general theory of doped
RVB states still needs to be completed, and a great part
of research in high-temperature superconductivity is de-
voted to this direction.

One obvious scenario (supported by the study of
Gutzwiller-projected wave functions) is that upon dop-
ing the system immediately becomes superconducting.
In that case the vison excitations get promoted to su-
perconducting vortices [29]. It has been even conjec-
tured that vison excitations may survive above the su-
perconducting transition temperature [28], but so far this
conjecture has not found any experimental confirmation
[44].

Another interesting question is the spin-charge sep-
aration in doped RVB systems. While the naïve pic-
ture predicts that the spin and charge excitations should
be decoupled in a liquid of RVB dimers (see, e.g., a
monomer-monomer correlation function acquiring a fi-
nite expectation value in the RK dimer model [31]),
the Gutzwiller-projected construction of quasiparticles
[22, 23, 24, 25, 45, 46] suggests that, to the contrary, the
spin and charge are bound to form a renormalized BCS-
like quasiparticle. A resolution of this apparent inconsis-
tency may lie in the observation that the spectral weight
of the quasiparticle goes to zero in the limit of zero dop-
ing [22]. Therefore, the spin and charge separated at half
filling may gradually recombine upon doping. It may be
interesting to find a model (possibly an extension of the
RK model) where the problem of spin-charge recombi-
nation may be treated analytically, to give an insight in
the physics of doped RVB systems.
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