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Abstract. Based on the Ambegaokar-Eckern-Schön approach to the Coulomb blockade, we develop a complete quantum
theory of the single electron transistor. We identify a previously unrecognized physical observable in the problem that, unlike
the usual average charge on the island, is robustly quantized for any finite value of the tunneling conductance as the temperature
goes to absolute zero. This novel quantity is fundamentally related to the non-symmetrized current noise of the system. Our
results display all of the superuniversal topological features of the θ angle concept that previously arose in the theory of the
quantum Hall effect.
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The Coulomb blockade has traditionally been viewed
as an experimental demonstration of “macroscopic
charge quantization" [1]. The standard experimental
set-up is the single electron transistor (SET) [2] which is
a mesoscopic metallic island coupled to a gate and con-
nected to two metallic reservoirs by means of tunnelling
contacts with a total conductance g (see Fig. 1).

Even though in the absence of tunneling the problem
is generally well understood, it has nevertheless been
shown that for any finite value of g, no matter how small,
the averaged charge Q on the island is un-quantized as
the temperature (T ) goes to absolute zero [3]. This raises
fundamental questions about the exact significance of
the experiments and the physical quantities in which the
Coulomb blockade is usually expressed.

In a recent investigation [4] the authors reported com-
plete quantum theory of the SET. This theory is mo-
tivated by the formal analogies that exist between the
Ambegaokar-Eckern-Schön (AES) theory on the one
hand, and the theory of the quantum Hall effect [5] on
the other. By studying the sensitivity of the system to
changes in the boundary conditions it was shown that the
AES theory generally defines two physical observables,
the SET conductance g ′ and a novel quantity termed q ′
that is fundamentally related to the current noise in the
SET. The q ′ is in all respects same as the Hall conduc-
tance in the quantum Hall effect and, unlike the averaged
charge Q on the island, it is robustly quantized in the limit
T → 0 independent of the value of g.

The physical parameters g ′ and q ′ set the stage for a
unifying renormalization theory of the SET within which
the various disconnected pieces of existing computa-

tional knowledge of the AES theory can in general be
understood. In this paper we review some of the main
ingredients of this theory and provide some more detail
on the development of the scaling diagram in the g′- q′
plane.

AES MODEL

The action involves a single abelian phase φ(τ) describ-
ing the potential fluctuations on the island V (τ) = iφ̇(τ)
with τ denoting the imaginary time [6]. The theory is de-
fined by

Z =
∫

D [φ ]e−S[φ ], S[φ ] = Sd +St +Sc. (1)

The action Sd describes the tunneling between the island
and the reservoirs

Sd [φ ] =
g
4

∫ β

0
dτ1dτ2 α(τ12)e−i[φ(τ1)−φ(τ2)]. (2)

Here, β = 1/T , τ12 = τ1 − τ2 and g = gl + gr, where
gl,r denotes the dimensionless bare tunneling conduc-
tance between the island and left/right reservoir (see
Fig. 1). The kernel α(τ) is usually expressed as α(τ) =
(T/π)∑n |ωn|e−iωnτ with ωn = 2πT n. The part St de-
scribes the coupling between the island and the gate and
Sc is the effect of the Coulomb interaction between the
electrons

St [φ ] =−2πiqW [φ ], Sc[φ ] =
1

4Ec

∫ β

0
dτ φ̇ 2. (3)



FIGURE 1. a) Sketch of the SET device. b) Equivalent circuit of the SET.

Here, q is the external charge and W [φ ] = 1/(2π)
∫ β

0 dτφ̇
is the winding number or topological charge of the φ
field. For the system in equilibrium the winding number
is strictly an integer [7] which means that Eq. (3) is only
sensitive to the fractional part k− 1/2 < q 6 k + 1/2 of
the external charge q.

Eq. (2) has classical finite action solutions φW (τ) with
a non-zero winding number that are completely analo-
gous to Yang-Mills instantons. The general expression
for winding number W is given by [8, 9]

eiφW (τ) = e−i2πT τ
|W |
∑
a=1

ei2πT τ − za

e−i2πT τ − z∗a
. (4)

For instantons (W > 0) the complex parameters za are
all inside the unit circle and for anti-instantons (W < 0)
they are outside. The classical action is finite Sd [φW ] +
St [φW ] = g|W |/2− 2πqWi leaving the set of parameters
{z1, . . . ,z|W |} as 2|W | zero modes in the problem.

On the weak coupling side (large g) the dominant con-
tribution comes from widely separated single instantons
with W = ±1. This leads to the dilute instanton gas ap-
proximation where argz/2πT is recognized as the posi-
tion of the single instanton and λ = (1−|z|2)β equals the
scale size or the duration of the potential pulse iφ̇W (τ).
The main effect of Sc in Eq. (3) is to provide a cut-off for
large frequencies or small scale sizes λ .

KUBO FORMULAE FOR THE
OBSERVABLE PARAMETERS

To develop a general quantum theory of the SET that en-
compasses both the weak and strong coupling aspects of
the AES model we make use of the fact that φ̃(τ) = ωnτ
satisfies the classical equation of motion of Eq. (1). By
employing φ̃(τ) as a background field then the effective
action S ′[φ̃ ] is properly defined in terms of a series ex-
pansion in powers of ωn. Retaining only the lowest order
terms in the series we can write

S ′[φ̃ ] = β
[

g ′

4π
|ωn|− iq ′ωn +O(ω2

n )
]
. (5)

The quantities of physical interest are the parameters g′
and q′ with k− 1/2 < q ′ 6 k + 1/2. They are formally
given in terms of the linear response expressions accord-
ing to [4, 10]

g ′ = 4π Im
∂KR(ω)

∂ω

∣∣∣∣∣
ω=0

, q ′ = Q+ Re
∂KR(ω)

∂ω

∣∣∣∣∣
ω=0

.

(6)
Here, Q = q+ i〈φ̇〉/(2Ec) denotes the average charge on
the island. The function KR(ω) is defined as the analytic
continuation iωn → ω + i0+ of the following expression

K(iωn) =− g
4β

∫ β

0
dτ1dτ2eiωnτ12α(τ12)D(τ21) (7)

with D(τ12) = 〈exp i[φ(τ2)−φ(τ1)]〉. The function
KR(ω) is written more explicitly in terms of the retarded
propagator DR(E) [10]

KR(ω) = g
∫ dEdE ′

4π3 E ′
nB(E ′)−nB(E)

E−E ′+ω + i0+ ImDR(E)

(8)
where nB(E) = [exp(βE)− 1]−1 is the Bose-Einstein
distribution.

The quantities g ′ and q ′ probe the low energy dynam-
ics of the SET since they are, by construction, a measure
for the sensitivity of the system to infinitesimal changes
in the boundary conditions. Eq. (6) defines in fact exactly
the same quantities that one normally would obtain in or-
dinary linear response theory [4, 10]. For example, g ′ is
same as the Kubo formula [11, 12, 13] relating a small
potential difference V between the reservoirs to the cur-
rent 〈I〉 across the island: 〈I〉 = e2GV/h where the SET
conductance G = glgrg′/(gl +gr)2 and h is Planck’s con-
stant. The new quantity q ′ is more transparently written
in terms of the quantum current noise according to

q′ = Q− (gl +gr)2

2glgr
i

∂
∂V

∫ 0

−∞
dt〈[I(0), I(t)]〉 (9)

in the limit V → 0.



WEAK COUPLING REGIME, g ′À 1

By evaluating Eq. (6) in a series expansion in powers of
1/g one obtains the well-known perturbative results for
g ′(T ) [14, 15, 16]. The new quantity q ′ is unaffected by
the quantum fluctuations. To establish the renormaliza-
tion of q ′ it is necessary to include the effect of instan-
tons. Extending the methodology of Ref. [5] we find [10]

ImDR(ω) = πβωδ (ω)
[

1− 2
g

ln
gEceγ

2π2T

]

+ Im
(

2πi/g
ω + i0+ −

2πi/g
ω + igEc/π

)

− g2Ec

π2T
e−g/2 Re

([
πβωδ (ω)

− 1
ω + i0+ +

1
ω + i2πT

]
e−i2πq

)
(10)

where γ = 0.577 . . . denotes the Euler constant. The first
two lines in Eq. (10) are the one-loop perturbative results
whereas the terms proportional to exp(−g/2)] are typi-
cally instanton terms with W = ±1. Using Eq. (10) we
obtain Eq. (8) as follows

KR(ω) =
iωg
4π

[
1− 2

g
ln

egEc

2π2T
+

2
g

ψ
(

1− iω
2πT

)]

− g3Ec

2π2 e−g/2ei2πq
[
ψ (1)−ψ

(
1− iω

2πT

)]

− g3Ec

2π2 e−g/2 cos2πq
nmax

∑
n>1

1
n

−
nmax

∑
n>0

gEcT
2π2T n+gEc

(11)

where ψ(z) denotes the Euler di-gamma function and
nmax ≈ gEc/T . The final results for the observable pa-
rameters of Eq. (6) can be written as follows

g ′(T ) = g−2ln
gEceγ+1

2π2T
− g3Ec

6T
e−g/2 cos2πq

(12)

q ′(T ) = q− g3Ec

24πT
e−g/2 sin2πq. (13)

These results describe the Coulomb blockade in the weak
coupling regime g ′ À 1 or at high temperatures T À
g3Ece−g/2 such that the amplitude of oscillations with
varying external charge q is small. These oscillations are
nevertheless much stronger than those appearing in the
average charge Q on the island [17, 18, 16]

Q(T ) = q− g2

π
e−g/2 ln

(
Ec

2π2eγ T

)
sin2πq. (14)

Eqs (12) and (13) are completely analogous to the instan-
ton results originally obtained in the theory of the quan-
tum Hall effect [19, 20] and recently studied experimen-
tally [21]. It should be mentioned that the result for the
SET conductance Eq. (12) coincides with that obtained
in Ref. [13].

STRONG COUPLING REGIME, g ′¿ 1

Near the point g = 0 and q = k + 1/2 one can project
the theory onto the low energy states with Q = k and
Q = k+1 respectively [3]. The AES theory is then mostly
elegantly described by the spin 1/2 effective action [10]

Sp f = βEcq2 +β
∆
2

+
∫ β

0
dτψ

(
∂τ −η +

∆
2

σz

)
ψ

+
g
4

∫ β

0
dτ1dτ2α(τ12)[ψ(τ1)σ−ψ(τ1)]

×[ψ(τ2)σ+ψ(τ2)]. (15)

Here, ψ and ψ are the Abrikosov’s two-component
pseudofermion fields [22, 23]. The quantity ∆ = Ec(2k+
1− 2q) > 0 is the energy gap between the charging
levels with Q = k and Q = k + 1 respectively and σ j
with j = x,y,z stands for the Pauli matrices and σ± =
(σx± iσy)/2.

We have introduced a chemical potential η in Eq. (15)
in order to eliminate the contributions from the non-
physical states with pseudofermion number Np f 6= 1.
This is accomplished by taking the limit η →−∞ at the
end of all computations.

Comparing Eqs. (1) and (15) we identify the spin oper-
ators ψ(τ)σ±ψ(τ) with the AES operators exp(±iφ(τ))
projected onto the states with Q = k and Q = k + 1 re-
spectively. It is interesting to notice that the effective ac-
tion (15) is similar to the XY case of the Bose-Kondo
model for spin s = 1/2 [24, 25]. Similar to the one loop
renormalization group procedure described in Ref. [25]
we sum the leading logarithms and find

ImDR(ω) =
π
γ2 δ (ω−∆ ′) tanh

β∆ ′

2
,

γ2 = 1+
g

2π2 ln
Λ

max{∆ ′,T} . (16)

Here, ∆′ = ∆/γ2 denotes the renormalized energy gap
and Λ is a high energy cut-off of order Ec. We obtain
the following result for Eq. (8)

KR(ω) =
g
γ2

ω +∆ ′

4π2 tanh
β∆ ′

2

[
ψ

(
1− i

ω +∆ ′

2πT

)

− ψ
(

1− i∆ ′

2πT

)
− 2π

∆ ′
Y (∆ ′)

]
(17)



with Y (∆ ′) = T ∑ωn>0 ωn∆ ′/(ω2
n + ∆ ′2). Based on

Eq. (17) we obtain the following expressions for the
physical observables in Eq. (6)

g ′(T ) =
g

2γ2
β∆′

sinhβ∆′
, (18)

q ′(T ) = Q(T )− γ2−1
2γ2 tanh

β∆′

2
. (19)

Here, Eq. (18) and Q(T ) are the same as the results
obtained in Ref. [26]

Q(T ) =
1
2

(
1− 1

γ2 tanh
β∆′

2

)
. (20)

In the limit T = 0 we find

Q(T = 0) =
g

4π2 ln
Λ
∆ ′

/(
1+

g
2π2 ln

Λ
∆ ′

)
(21)

which is the result obtained by Matveev [3]. It says that
in the presence of tunneling g 6= 0 the average charge
Q(T ) on the island is un- quantized. On the other hand,
Eqs. (19) and (20) imply

q ′(T ) = k +
1

1+ eβ∆′ (22)

indicating that the novel physical quantity q ′ is robustly
quantized as one moves away from quantum criticality.

Finally, at lower temperatures T . ∆′ the inelastic co-
tunneling processes become important [27]. The lowest
order correction to DR(ω) due to inelastic cotunneling is
obtained as follows [10]

δDR
inel(ω) =

g
4πγ4

iω
(ω−∆′+ i0+)2 . (23)

Based on this result we compute the corrections to the
physical observables using Eq. (8) and Eq. (6) and the
result is

δg′inel(T ) =
g2

4π2γ4
∂

∂∆′

[
β∆′2

2π
ψ ′

(
1+

iβ∆′

2π

)
−∆′

]

δq′inel(T ) =
g2

4πγ4 ∆′
∂ 2

∂∆′2

(
∆′ coth

β∆′

2

)
. (24)

In the regime T . ∆′ we find

δg′inel(T ) =
g2

48γ4
T 2

∆′2
(25)

δq′inel(T ) =
g2

2πγ4
∆′2

T 2 e−β∆′ . (26)

Eq. (25) coincides with the result found in Ref. [26].
As a final remark we emphasize that the results for
cotunneling cannot be extrapolated all the way down to
the regime of exponential localization T ¿ ∆′ which
is clearly beyond the range of validity of the strong
coupling expansion.

SUMMARY AND CONCLUSIONS

The temperature dependence of the physical observables
g ′ and q ′ can in general be expressed in terms of renor-
malization group β functions

dg ′

d lnβ
= βg(g′,q′) ,

dq ′

d lnβ
= βq(g′,q′). (27)

From Eqs. (12), (13) we extract for the weak coupling
regime

βg = −2− π2e−γ−1

3
g ′2e−g ′/2 cos2πq ′, (28)

βq =
πe−γ−1

12
g ′2e−g ′/2 sin2πq ′. (29)

From Eqs. (18) and (22) we obtain the following strong
coupling behavior near q ′ = k +1/2

βg =−g ′2

π2 , βq =
(

q ′− k− 1
2

)(
1− g ′

π2

)
. (30)

This result shows that q ′ = k+1/2 and g ′ = 0 is the crit-
ical fixed point of the AES theory with g′ a marginally
irrelevant scaling variable.

Eqs (29) and (30) together determine a unifying scal-
ing diagram of the SET in the g ′ and q ′ plane as illus-
trated in Fig. 2. The stable strong coupling fixed points
g′ = 0 and q′ = k clearly indicate that the AES theory
generally displays the Coulomb blockade as T goes to
absolute zero. This scaling phenomenon is fundamen-
tally different from semiclassical picture of the Coulomb
blockade since it elucidates the discrete nature of the
electronic charge which is independent of tunneling.

In conclusion, the AES model is an extremely inter-
esting and exactly solvable example of a θ angle concept
that displays all the super universal topological features
that have arisen before in the context of the quantum
Hall liquids [5, 28] as well as quantum spin liquids [29].
These include not only the existence of gapless or critical
excitations at q′ = k +1/2 (or θ = π) but also the robust
topological quantum numbers that explain the “macro-
scopic charge quantization" of the SET at zero tempera-
ture and finite values of g.
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