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Abstract. We address continuous weak linear quantum measurement and argue that it is best understood in terms of statistics
of the outcomes of the linear detectors measuring a quantum system, for example, a qubit. We develop a proper formalism
to evaluate the statistics of such measurement. Generally, we are able to evaluate the joint probability distribution of the
detector outcomes and the qubit variables. We concentrate on two setups. The application of our method to the setup where
a single pseudospin component is measured gives a comphrehensive picture of quantum non-demolition measurement. More
interesting setup consists of a qubit and three independent detectors that simultaneously monitor three non-commuting
operator variables, those corresponding to three pseudo-spin components of the qubit. When analyzing the distribution in
the limit of big values of the outcomes, we reveal a high degree of correspondence between the three outcomes and three
components of the qubit pseudo-spin after the measurement. This enables a high-fidelity monitoring of all three components.
We discuss the relation between the monitoring described and the algorithms of quantum information theory that use the
results of the partial measurement. The formalism is based on Feynman-Vernon approach, roots in the theory of full counting
statistics, and boils down to a Bloch-Redfield equation augmented with counting fields.
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INTRODUCTION

The theory of quantum measurement, being a founda-
tion of quantum physics, is attracting more and more at-
tention [1]. Intrinsic paradoxes [2] are definitely a main
reason for studying quantum measurements. More moti-
vation comes from the practical needs to understand the
real solid-state based devices [3, 4] developed for quan-
tum computing [5]. Measurements in solid-state setups
may provide access to extra variables that facilitate the
read out of the quantum information stored in the ele-
mentary two-level quantum systems (qubits). The con-
cept of continuous weak linear measurement (CWLM),
where the interaction between the detector and the mea-
sured system is explicit and sufficiently weak, has been
recently elaborated in context of the solid state quan-
tum computing [6, 7, 8, 9, 10]. CWLM provides a uni-
versal description of the measurement process and is
based on general linear response theory [11]. It applies
to a large class of linear detectors: From common ampli-
fiers to more exotic on-chip detectors such as quantum
point contact [12], superconducting SET transistors [13],
generic mesoscopic conductors [14], fluxons in a Joseph-
son transmission line to measure a flux qubit [15, 16].

It is an important feature of CWLM that the (quantum)
information is transferred from a quantum system being
measured — a qubit — to other degrees of freedom:
those of the detector. The outcome of the measurement
is thus represented by the detector degrees of freedom
rather than those of the qubit. We will address both

the statistics of the outcomes and joint statistics of the
outcomes and the qubit degrees of freedom.

We stress the difference between the detector out-
comes and the outcomes of a projective measurement
of a qubit. In distinction from the result of a projective
measurement, the detector outcome is not discrete, since
the detector output (for instance, voltage or current) is
a continuous variable. The outcomes do not even have
to correlate with the state of the qubit if the detector is
uncoupled. Further, the detector variables are subject to
noise not related to the qubit. Owing to the feedback of
the detector at the qubit, this noise affects the qubit too.

In comparison with the text-book projective measure-
ment that instantly provides a result and projects the sys-
tem onto the state corresponding to the result, the CWLM
takes time both to accumulate the information and to dis-
tort the qubit. The time τm required to obtain a suffi-
ciently accurate measurement result is called "measure-
ment time" and is a characteristic of a CWLM setup. It is
not a duration of an individual measurement in this setup:
the latter may vary. The distortion is due to the inevitable
back action of the detector and is characterized by the
dephasing rate Γd . It has been shown [6, 7, 8] that for an
optimized — quantum limited — detector τmΓd = 1/2
while the "measurement time" τm greatly exceeds 1/2Γd
for less optimal detectors.

In the context of quantum information theory, CWLM
may be understood as an interaction of the qubit with
infinitely many ancillary qubits representing the detector
degrees of freedom. Each ancilla is brought to weakly in-



teract with the qubit for a short time and is subsequently
measured. Owing to the interaction, the quantum state of
the ancillae is entangled with the state of the qubit. The
detector output is proportional to the sum of the mea-
surement results of a large set of ancillae. This allows to
transfer quantum information from the qubit to the detec-
tor without formal projective measurement of the qubit.
Therefore the peculiarities of the CWLM can be under-
stood in the framework of a projective measurement, al-
though a more complicated one involving the detector
degrees of freedom. The CWLM can be thus seen as a
build-up of an entanglement between the qubit and the
detector. An outcome of an individual CWLM is the de-
tector output accumulated during the time interval of a
certain duration τd . Any CWLM can be described as a
generalized quantum measurement, that involves qubit
and detector degrees of freedom.

The outcome randomly varies from measurement to
measurement. We argue here that studying statistics of
the measurement outcomes of a CWLM is the best way
to understand and characterize such a measurement. This
is especially important for the simultaneous measure-
ment of non-commuting variables (say, A and B) we con-
centrate on in this work. In this case, the text-book pro-
jective measurement can not help to predict the statistics
of the results: it would depend on the order of measure-
ments of A and B. This property of the measurements in
non-commuting bases enables most quantum cryptogra-
phy [17] algorithms and has been extensively elucidated
in Ref. [18].

One can straightforwardly realize in experiment a
CWLM of a quantum system where A and B are mea-
sured simultaneously. If A and B commute, the statistics
of the outcomes of sufficiently long CWLM corresponds
to the predictions of projective measurement scheme (see
Sec. III). The projective measurement scheme loses its
predictive power if A and B do not commute. The rea-
son is that the order of measurement of A and B is not
determined in the course of a continuous measurement.
The statistics of CWLM outputs thus can not be straight-
forwardly conjectured and has to be evaluated from the
quantum mechanical treatment of the whole system con-
sisting of the qubit and the detectors.

In a sharp contrast to the case of commuting vari-
ables, the most probable outcome of a sufficiently long
CWLM of non-commuting variables does not depend
on the qubit state. Therefore it provides no information
about the qubit. The information is however hidden in
the statistics of random outcomes. Recently, the simul-
taneous acquisition of two non-communing observables
was investigated in the framework of CWLM [9], and the
correlation of the random output of two detectors was
found to be informative. Not only noise, but the whole
full counting statistics (FCS) of the non-commuting mea-
surements has been recently addressed for an example of

many spins traversing the detectors [19].

RESULTS IN SHORT

We develop the necessary formalism for the measure-
ment statistics. Our approach stems from the FCS the-
ory of electron transfers [20] in the extended Keldysh
formalism [21], which has been recently discussed [22]
in the context of the quantum measurement. At first
step, we obtain a Feynman-Vernon action to describe
the fluctuations of the input and output variables of the
detector(s). In the relevant limit, the action is local in
time. So at the second step we reduce the path inte-
gral to the solution of a differential equation that ap-
pears to be a Bloch-Redfield equation augmented with
the counting field. We exemplify the formalism address-
ing a relatively simple case of quantum non-demolition
(QND) measurement [23]. We evaluate the distribution
of the outcomes for a single detector and understand the
statistics of a recently proposed quantum un-demolition
measurement[10]. The main results concern the statis-
tics of measurement of non-commuting variables for the
case of three independent detectors measuring the three
components of the qubit pseudo-spin. We find the sta-
tistical correspondence between the three outcomes and
three wavefunction components after the measurement.
The correspondence is characterized by a fidelity that
generally increases with the magnitude of the outcomes
reaching the ideal value 1 in the limit of large magni-
tudes. Since very large outcomes are statistically rare and
require long waiting times, this result could be of a purely
theoretical value. To prove the opposite, we have evalu-
ated the fidelity at moderate magnitudes of outcomes and
measurement durations τd and we were able to demon-
strate the fidelity of 0.95 for τd ' 7τm. We term this
"quantum monitoring". Ideally, the result of the quantum
monitoring is a pure state of the qubit and three numbers
(detector outputs) giving the polarization of the state. The
same result can be also achieved by preparing the qubit
state of the known polarization, for instance, by a pro-
jective measurement along a certain axis. The difference
is that in the case of preparation the polarization axis is
known to the observer in advance, while in the case of
monitoring it is not so: both the three numbers and the
state emerge from dynamics of the quantum system that
encompasses the qubit and the detectors. A fuller account
of the results can be found in [28].



METHOD

We start with a single detector setup. The Hamiltonian
reads as follows:

H = Hq +Hint +Hd , (1a)

Hq =
3

∑
i=1

Hiσ̂i; Hint = σ̂3Q̂ . (1b)

Here, Hq is the Hamiltonian of the qubit in terms of
Pauli matrices σ̂i (i = 1, 2, 3) corresponding to three
components of the qubit pseudo-spin. Hint gives the in-
teraction between the detector and the third component
of the pseudo-spin of the qubit, Q̂ being the detector in-
put variable. Hd is the Hamiltonian of the detector which
we do not specify assuming linear dynamics of the de-
tector variables. Our goal is the statistics of the detector
output variable V̂ . Following [29] we introduce a count-
ing field χ(t) coupled to the output variable V̂ and use
Keldysh scheme with different Hamiltonians H± on two
parts of the Keldysh contour[26], H± = H± h̄χ(t)V̂/2.
± corresponding to the upper/lower branch of the con-
tour. The counting field χ(t) plays a role of the variable
in the probability-generating function of the detector out-
comes V (t), this function is given by:

Z({χ(t)}) = Tr
(−→

T e
−i
h̄

∫
dtH+

R̂(0)
←−
T e

i
h̄

∫
dtH−) . (2)

Tr(· · ·) implying the trace over both detector and qubit
variables. Here,

−→
T (
←−
T ) denotes time (reversed) order-

ing in evolution exponents and R̂(0) is the initial den-
sity matrix of the qubit and detector. Next we em-
ploy the path integral representation for the probability-
generating function [29]. The integral is over the detector
variables,

Z({χ(t)}) =
∫

D X̄+D X̄−eAd({X̄+(t),X̄−(t),χ̄(t)})

×Trqubit
(−→

T e−
i
h̄

∫
dt (Hq+σ̂3Q̂+(t))ρ̂(0)

×←−T e
i
h̄

∫
dt (Hq+σ̂3Q̂−(t))) . (3)

Here, X̄±(t) are two-dimensional vectors of the detector
variables X̄±(t) = (Q±(t),V±(t))T , D X̄± = ∏

t
D X̄±(t),

ρ̂(0) is the qubit density matrix. The action Ad is bilinear
in X̄± to describe linear dynamics of the detector. Fol-
lowing common assumptions about CWLM, [7, 8] we
assume instant detector responses and white noises to ar-
rive at

Ad =
∫

dt[−1
2

x̄T (t)(ǎ−1)T Šǎ−1x̄(t)

+iX̄T (t)ǎ−1x̄(t)+ iχ̄T (t)X̄(t)] , (4)

where we switch to the "quantum" (x̄) and "classical"(X̄)
variables defined as follows: x̄ = (X̄+ − X̄−)/h̄, X̄ =

(X̄+ + X̄−)/2. Here, χ̄ = (0, χ)T , the 2× 2 matrices ǎ,
Š give the response functions and noises of the detec-
tor respectively. S11 is the noise of the input variable re-
sponsible for the backaction of the detector and decoher-
ence of the qubit; S22 is the output noise and S12 = S21
presents the correlation of these two noises. a12 deter-
mines the detector response on the qubit pseudo-spin,
〈V̂ 〉= a12〈σ̂3〉. Other response functions a21,a22,a11 are
respectively related to reverse gain, output and input
impedances of the detector and are not of immediate in-
terest for us. The detector is characterized with the de-
phasing rate Γd = 2S11/h̄2 and the "measurement time"
τm = S22/a2

12.[31, 7] The Cauchy-Schwartz inequality
4S11S22−4S2

12 ≥ h̄2a2
12 [7, 8] guarantees τmΓd ≥ 1/2.

It is important for further advance that the action (4)
is local in time. In this case, the path integral in (3)
can be taken at each time slice separately. The result
of integration is expressed in terms of the solution of
a local-in-time evolution equation, which is a familiar
Bloch-Riedel equation for the density matrix modified
by the counting field.[33] It reads:

∂ ρ̂
∂ t

= − i
h̄
[Ĥq, ρ̂]+

χ2

2
S22ρ̂ +

ia12χ
2

(ρ̂σ̂z + σ̂zρ̂)

−S12

h̄
χ(ρ̂σ̂z− σ̂zρ̂)− S11

h̄2 (ρ̂− σ̂zρ̂σ̂z) . (5)

The locality in time is a relevant but strong assumption
which in fact corresponds to a classical detector (indeed,
the action (4) does not contain any h̄.) This is why we
do not have to worry about possible quantum uncertain-
ties of the detector output that could complicate the in-
terpretation of the statistics. [29] The scheme described
can be easily extended to more qubits and/or detectors:
One just adds extra (counting) fields for detectors and
extra Pauli matrices for qubits. The case of interest for us
is the simultaneous CWLM of three pseudo-spin projec-
tions. The coupling term becomes

H = σ̂1Q̂1 + σ̂2Q̂2 + σ̂3Q̂3 . (6)

Q̂k (k = 1, 2, 3) being the input fields of the three detec-
tors . Three counting fields χk are coupled to the corre-
sponding output variables Vk of the three detectors. We
assume for simplicity that the detectors are independent
and identical each described by the action (4). The cor-
responding Bloch-Reidel equation reads

∂ ρ̂
∂ t

= − i
h̄
[Ĥq, ρ̂]+

χ2

2
S22ρ̂ +

ia12

2

3

∑
k=1

χk[σ̂k, ρ̂]+

+
S12

h̄

3

∑
k=1

χk[σ̂k, ρ̂]− S11

h̄2 (3ρ̂−
3

∑
k=1

σ̂kρ̂σ̂k) ,(7)

where χ =
√

χ2
1 + χ2

2 + χ2
3 .
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FIGURE 1. Quantum Non-demolition measurent: Two suc-
cessive measurements. In each pair of the curves, the solid
one gives the distribution of outcome of the first measurement
while the dashed one gives the distribution for the second mea-
surement provided the first measurement gave v1 =−1. Lower
(upper) pair of curves corresponds to long, τ1,2 = 2 (short,
τ1,2 = 0.3) measurements. The long measurement is repetitive,
the short one is not.
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FIGURE 2. Quantum "undemolition" measurement: σ1(v,τ)
characterizes the dephasing of the superposition after a time
τ(τ = 1 for plots) provided the detector outcome is v. A
quantum-limited detector (C = C12 = 0, upper curve) allows
for the quantum un-demolition measurement (σ1 = 1) at v = 0.
This does not work for a worse detector (C = C12 = 1, lower
curve).

SINGLE VARIABLE

Let us first illustrate the method with one-detector
QND measurement recently realized for superconduct-
ing qubits.[36] To satisfy non-demolishing condition
[23], we should set Ĥq = εσ̂3. In this case, Hq is can-
celed by transformation to the rotating frame, ρ(t) →
eiĤqt/h̄ρ(t)e−iĤqt/h̄. Let us perform two measurements

that immediately follow each other. During the first mea-
surement, the detector output is collected in the time
interval (0, t1) so the measurement outcome is V1 =∫ t1

0 dtV (t)/t1. Similarly, for the second measurement
V2 =

∫ t1+t2
t1 dtV (t)/t2. The statistics of the two outcomes

is given by a piece-wise constant χ(t) = χ1(χ2) during
the first(second) time interval and χ(t) = 0 otherwise.
We parameterize ρ̂ as follows: ρ̂(t) = (1+ σ̂3)ρ+(t)/2+
(1− σ̂3)ρ−(t)/2 + σ̂1ρ1(t)+ σ̂2ρ2(t). Eq. (5) gives two
decoupled pairs of equations for ρ± and ρ1,2 respectively.
Solving for ρ±(t) with initial conditions ρ±(0) (assum-
ing ρ1,2(0) = 0) and transforming the generating func-
tion gives a very simple probability distribution of two
outcomes:

P(v1,v2) = ∑
±

√
τ1τ2

2π
ρ±(0)e−

(v1∓1)2τ1
2 e−

(v2∓1)2τ2
2 , (8)

where we switched to the dimensionless times τ = t/τm,
and outputs v = V/a12. This result is in fact classical:
It does not depend on the dephasing rate. Initially, the
qubit comes either in the state + or − (with probabili-
ties ρ±(0)). The state persists during the measurements,
the outcome of each measurement is distributed normally
around ±1 with the standard deviation

√τ1,2. The re-
peatability of the measurements is illustrated in Fig. 1(a).

To illustrate the quantum aspect, let us set the initial
wave function to a superposition: ρ̂(0) = σ̂1, and evalu-
ate the corresponding projection of the pseudo-spin after
the measurement in time interval (0,τ) that gives the out-
come v. In addition to equations for ρ±, we have to solve
two equations for ρ1,2,

∂ρ1,2

∂ t
=∓2iS21χ

h̄
ρ2,1− (Γd +

χ2

2
S22)ρ1,2 . (9)

that do contain the dephasing rate. The quantity of inter-
est is obtained by transforming the generating functions
ρ1(τ,χ), Tr(ρ̂(τ,χ)) and reads (Fig. 2(b)):

σ1(v,τ) =
cos(C12vτ)
cosh(vτ)

e−
C
2 τ , (10)

where we introduce dimensionless constants
C ≡ 4(S11S22− S2

12)/(h̄a12)2− 1 and C12 = 2S12/h̄a12.
Generally, σ1(v,τ) quickly decays with increasing τ .
This indicates the dephasing of the superposition by
the measurement. Remarkably enough, for a quantum-
limited detector (C = C12 = 0) and for a special value of
the measurement outcome v = 0 the dephasing is absent
and the wave function retains the initial value. This was
called "quantum un-demolition measurement" in [10].
Physical meaning of this is that the phase shift between
the states ±, acquired from the detector, 2

∫ τ
0 dtQ(t)/h̄,

is zero at this (rather unprobable, [10]) value of the out-
come. We stress that the strict correspondence between



the phase shift and outcome does not hold for a general
detector, so that σ1(v = 0,τ) = exp(−Cτ/2) decreases
with the time of measurement.

NON-COMMUTING VARIABLES

These simple examples prove the use of the statistical
approach. Thus encouraged, we turn to the statistics of
the CWLM of non-commuting variables. We assume that
the Hamiltonian εσ3 is removed by transforming to the
rotating frame. This presumes that the signal from σ1,2 is
collected at frequencies ε/h̄ rather than at zero frequency
as the signal from σ3 is V1,2 =

∫ τ
0 dt(cos(εt/h̄)V1,2(t)∓

sin(εt/h̄)V2,1(t))/τ . Without the term Hq, the Eq. (7) is
readily solved in proper basis in pseudo-spin space: One
of the Pauli matrices is defined as σ̂χ = (χ1σ̂1 + χ2σ̂2 +
χ3σ̂3)/χ , while two others are orthogonal to it.

We stress that the CWLM we are about to describe is
hardly a measurement of the initial state of the qubit. In
contrast to QND where the dephasing is limited to 1,2
components, the detectors randomly rotate the pseudo-
spin in all three directions. The quantum information
about initial state is quickly lost at the time scale of 1/Γd ,
that is, before a statistically reliable measurement result
can be accumulated. To this end, the initial condition
hardly matters and we choose the unpolarized density
matrix ρ̂(0) = 1

2 1̂. Albeit we will see that this CWLM
can be rather informative.

Let us first discuss the distribution of the detector
outputs. In the limit of long time of measurement τÀ 1,
the log of the generating function reads:

− logZ = τ
(

Cd−
√

C2
d −χ2 +

χ2

2

)
. (11)

where χi has been made dimensionless χiS22/a12 → χi
as to give the cumulants of dimensionless outputs vi.
Here, Cd ≡ Γdτm = (C + 1 +C2

12)/2 ≥ 1/2. The distri-
bution is isotropic in three outputs depending on v ≡√

v2
1 + v2

2 + v2
3 only and in this limit is obtained by the

saddle-point method. The distribution is concentrated at
zero and is essentially non-Gaussian at v ' 1. The pres-
ence of the qubit exponentially enhances probabilities
of such outcomes.(Fig. 2(a)) As to low cumulants, the
presence of the qubit enhances output noises of each
detector by the factor 1 + 1/Cd . Most importantly, it
gives rise to non-zero fourth cumulant 〈〈v2

i v2
j〉〉=−(1+

2δi j)/(Cdτ)3— correlation of noise variations in for-
mally independent detectors.

Let us discuss the correlation of the detector outputs
and the pseudo-spin after such measurement. We char-
acterize this with a fidelity f (v), inner product of the
normalized vector of the outcomes and averaged pseudo-
spin at given outcome v, f = ∑i〈σi〉vi/v. The fidelity
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FIGURE 3. Statistics of CWLM of non-commuting vari-
ables. Logarithm of the outcome distribution is a function of

v ≡
√

v2
1 + v2

2 + v2
3. The curves from the top to the bottom:

quantum-limited detector (Cd = 1/2), worse detector (Cd = 2),
detector not connected to the qubit. At big values of outputs
vÀ 1, the probability of a big output is exponentially enhanced
by the presence of the qubit.

is 1 if the values of the outputs precisely give all three
pseudo-spin components. From the saddle-point solution
we obtain that f does not depend on τ in the limit τÀ 1,
and at large values of the outcomes vÀ 1 reaches the
ideal value f ≈ 1−Cd/v. This, quite unexpectedly, en-
ables an efficient quantum monitoring of non-commuting
variables. Roughly, one continuously measures the sys-
tem and waits for sufficiently high values of the outputs.
When this is achieved, the state of the qubit is known
with any accuracy desired.
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FIGURE 4. Fidelity of quantum monitoring f versus mea-
surement time τ for v ranging from 4 to 1.5 (from upper to
lower curves in each subfigure) Bullets (triangles) at each curve
indicate the value of τ at which the probability to get the out-
come > v is 10% (50 %). (b) The quantum-limited detector. (c)
A worse detector (Cd = 2).

The better the accuracy desired ades ≡ 1− f ¿ 1,
the bigger outputs are required, v À Cd/ades, so the
typical waiting time grows exponentially, log(tw)' a−2

des.
To prove that the monitoring is practical, we have to
show that a reasonably high fidelity can be achieved in
a reasonably short time. We evaluate and plot (Fig. 2(b)
and 2(c) ) f (v) of a single measurement of duration
τ versus τ . We see from the plots that f = 0.95 is
achieved for a quantum-limited detector at v = 4 and
τ = 0.7. At these parameters, 10% of the measurements
are successful, i.e. give the output v > 4. We conclude
that the 5% accuracy is typically achieved in time interval
' 7τm.

To conclude, we present the statistical approach to the
CWLM and illustrate the use of it. We propose a scheme
for an efficient monitoring of non-commuting variables
and prove its feasibility.
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