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Abstract. In this article we discuss our two recent proposals on producing and detecting of entangled states in quantum
conductors. First we analyze a setup where two electrons are scattered on a quantum dot with Coulomb repulsion and became
orbitally entangled. Second, for identical noninteracting particles we suggest an operating scheme for the deliberate generation
of spin-entangled electron pairs in a normal-metal mesoscopic structure with a fork geometry. The spin-entangled pair is
created through a post-selection in the two branches of the fork. We also make comments on different ways of producing and
quantifying the degree of entanglement.
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INTRODUCTION

Quantum mechanics is a non-deterministic theory, where
one can not predict results of all measurements with cer-
tainty. A simplest example is the tunneling of the electron
through a barrier. After the scattering electron may tun-
nel through the barrier with a finite probability T or may
be reflected back with probability R = 1− T . In anal-
ogy with optics, this phenomena is known as partitioning
of the wave function. This type of phenomena requires
probabilistic description which turns out to be the only
accessible way in general situation for quantum systems,
as was first pointed out by Born [1].

The partitioning of the wave function reveals itself
in the shot noise phenomenon in coherent conductors,
where Fermi statistics suppress fluctuations in the num-
ber of particles incoming from reservoir [2]. The shot
noise can be observed by measuring the second order
current-current correlators that requires a very elaborate
experiment in practice [3]. In general, noise measure-
ments provide more information about the system then
the measurement of conductance alone. As an exam-
ple, measurement of the shot noise allows one to probe
the charge of the carriers [4]. Going beyond the sec-
ond order correlators, one could study the full counting
statistics (FCS) that is the probability to transmit n elec-
trons through a barrier during a given time interval [5].
To measure FCS, one needs even more elaborate setup,
which has been realized for electrons [6]. Still the exper-
imental setup for measuring FCS were electrons flying
ballistically remains to be challenging.

A more complicated type of uncertainty in quantum
mechanics appears in the joint state of two systems A and
B which have been interacted in the past. Then the out-
come of the measurement on the system A will in general
depend on a state of the system B even if two systems

are spatially separated and no longer interact with each
other. The appearance of such correlations between two
systems is not a surprise even in the classical physics.
What is amazing is that these correlation in the quantum
case, as was first shown by Bell [7], may be stronger than
any possible classical correlations adopting the Einstein
locality principle.

The situation where the state of the system B corre-
lated with the system A is unknown can be described by
the density matrix ρA introduced independently by Lan-
dau [8] and von Neumann [9]. In this case the state of the
system A is mixed, i.e. can not be described by the wave
function as it can be done for pure states. To distinguish
between pure and mixed states one could calculate the
purity ΠA = tr{ρ2

A} which equals to 1 for pure states and
ΠA < 1 for the mixed ones [10].

For a long time this type of correlation was mostly
considered as the source of the decoherence of the sys-
tem A by some reservoir B, spoiling the quantum be-
haviour of the system A. Nowadays it is very well un-
derstood that such mixed states with ΠA < 1 describe
an entangled state of two systems A and B, a concept
first introduced by Einstein Podolsky and Rosen [11] and
Schroedinger [12]. Provided the full control on the state
of the system B, today these quantum correlations be-
tween entangled systems are regarded as a resource for
various sort of the quantum information schemes like
cryptography and quantum computation. In addition, one
may study fundamental aspects of the quantum theory
like locality in quantum mechanics by measuring proper
correlations between the systems A and B, checking e.g.
Bell inequality [7, 13].

Various setups were proposed for producing isolated
entangled particles and detecting the presence of the en-
tanglement by testing the Bell inequality via measuring
cross correlators for the currents [14, 15], see Ref. [16]



for a recent review. As we have already noted, to check
the entanglement presence one may use purity or von
Neumann entropy. Nevertheless it is not always clear
what would be the experimental procedure to check all
components of the density matrix. Moreover, in general
ΠA < 1 does not guarantee that the system A is not entan-
gled with some other system C e.g. with an uncontrolled
environment. Testing the Bell inequality via measuring
proper correlation between particles remains to be the
most reliable way to detect the entanglement. Although
such an experiment was successfully realized in optics
[17], the corresponding experiment for the massive par-
ticles remains to be challenging. To make some progress,
one could measure instead more accessible quantities of
the total system A+B e.g. magnetization which may in-
dicate the presence of entanglement [18]. In this case,
one has to strongly rely on a particular theoretical model,
describing the system.

In this article we discuss our two recent proposals on
producing and detecting of entangled states in quantum
conductors. The generic way for two particles become
entangled is to let them interact with each other. In [19]
we analyzed a setup where two electrons are scattered
on a quantum dot with Coulomb repulsion. Characteriz-
ing the dot by its resonances we have derived an exact
formula for the N particle scattering matrix. We make
use of our results to study the interaction-induced orbital
entanglement of two electrons incident on the dot in a
spin-singlet state.

For the identical particles one can create an entangled
state by a post-selection of measured outcomes without
direct interaction [20]. In [15] we suggest an operating
scheme for the deliberate generation of spin-entangled
electron pairs in a normal-metal mesoscopic structure
with a fork geometry. Voltage pulses with associated
Faraday flux equal to one flux unit Φ = hc/e drive indi-
vidual singlet-pairs of electrons towards the beam split-
ter. The spin-entangled pair is created through a post-
selection in the two branches of the fork. We analyze the
appearance of entanglement in a Bell inequality test for-
mulated in terms of the number of transmitted electrons
with a given spin polarization.

ENTANGLEMENT DUE TO COULOMB
INTERACTION

In this section we follow our recent paper [19], where
we derived the N-particle scattering matrix for electrons
propagating through quantum dot with Coulomb repul-
sion. The scattering matrix, taking asymptotically free
incoming states through an interaction region and pro-
viding the free outgoing states, is of huge basic and
practical interest. Originally introduced by Born [1] and

by Wheeler and independently by Heisenberg [21] in
atomic and particle physics, its application to electron
transport [22] has made it into a central tool of meso-
scopic physics. Its formulation for non-interacting elec-
trons provides the two-terminal conductance [22], non-
equilibrium noise [2] and the full counting statistics [5]
in terms of the transmission probability across the scat-
terer. In interacting case the scattering matrix besides the
transport characteristics allows one to study degree of en-
tanglement of a many-particle scattered state induced by
interaction. The entanglement between electrons can be
studied in a new type of transport experiment, where spe-
cially designed electron sources send a finite number of
electrons towards the scattering region [23, 24], see Ref.
[25] for recent experiments in this direction.

Within our formalism, the interaction is accounted for
by the Hamiltonian Ĥint = e2N̂2/2C, where N̂ is the dot’s
electron number operator and C denotes its capacitance.
We use two-particle scattering matrix to study the wave
function and degree of entanglement of two scattered
electrons. Below, we construct the two-particle scattering
matrix for the quantum dot including Coulomb interac-
tion and generalize the result to the N-particle situation.
For a quantum dot with a single resonance our model is
equivalent to the Anderson impurity model [26] up to the
self-interaction energy e2N̂/2C, which leads to the renor-
malization of the bare resonance energy ε → ε + e2/2C,
see below.

Usually, the scattering matrix connects states at given
energies; here, we start with the propagator describing
the scattering of wave packets in coordinate space. We
start with a (properly symmetrized, spin indices are sup-
pressed) incident two-electron wave function at time t1,
Ψin(~y, t1), with~y = {y1,y2}. The scattered wave function
at later times t2 > t1 can be obtained with the help of
the two-particle propagator K(2)(~x, t2;~y, t1) describing the
evolution of two particles from the initial positions ~y at
time t1 to the final positions~x at t2,

Ψout(~x, t2) =
∫

d2yK(2)(~x, t2;~y, t1)Ψin(~y, t1). (1)

The two-particle propagator K(2) can be defined through
a Feynman path integral over trajectories~x(t),

K(2)(~x, t2;~y, t1)=
∫

D [~x ] exp
( i

h̄

∫ t2

t1
dt L(2)(~x;~̇x)

)
, (2)

with the boundary conditions ~x(t1) =~y. Here, L(2)(~x,~̇x)
is the system’s Lagrangian including kinetic (∝ m), dot
potential (U), and interaction (∝ Uc = 2e2/C) energies,

L(2) =
2

∑
i=1

[mẋ2
i

2
−U(xi)

]
−Uc

4
[
χd(x1)+χd(x2)

]2
, (3)

with the characteristic function χd(x) of the dot equal to
unity within the dot and zero outside.



Without interaction, the two-particle propagator
factorizes, K(2)(~x, t2;~y, t1) = ΠiK(1)(xi, t2;yi, t1) with
K(1)(x, t2;y, t1) the one-particle propagator, while the
interaction mixes the particle trajectories. A Hubbard-
Stratonovich transformation with the real auxiliary field
z(t) allows us to decouple the quadratic interaction

K(2)(~x, t2;~y, t1) =
∫

D [z]exp
[
i
Uc

h̄

∫
dt z2(t)

]
(4)

×K(1)
[z] (x1, t2;y1, t1)K(1)

[z] (x2, t2;y2, t1),

where K(1)
[z] (x, t2;y, t1) is the one-particle propagator in the

presence of a fluctuating potential Uc(t) = Ucz(t),

K(1)
[z] =

∫
D [x]exp

[ i
h̄

∫ t2

t1
dt

(mẋ2

2
−U(x)−Ucz(t)χd(x)

)]
.

Next, we introduce the scattering matrix S(1)
αβ (ε) ≡

S(1)(ε) of the dot in the absence of the fluctuating po-
tential Uc(t); the indices α,β ∈ {L,R} specify the lead
indices for the outgoing (α) and incoming (β ) scatter-
ing channels. We describe the dot through the resonance
positions (ε j) and (identical) widths (Γ); the scattering
matrix S(1)

αβ (ε) then takes the form

S(1)
αβ (ε) = rαβ +∑

j

iΓ/2
ε− ε j + iΓ/2

s( j)
αβ , (5)

where the constant 2×2 matrices r and s( j) can be found
from the unitarity conditions. The Fourier transform pro-
vides the real time (τ) representation

S(1)
αβ (τ) = δ (τ)rαβ +θ(τ)∑

j

η
2

e−iω jτ e−ητ/2 s( j)
αβ , (6)

where η = Γ/h̄ is the inverse dwell time, ω j = ε j/h̄ is the
resonance frequency, and δ (τ), θ(τ) are the usual δ - and
Heaviside functions. The first term in Eq. (6) describes
the reflection of a particle that has not penetrated into the
dot, while the subsequent terms correspond to processes
where the particle has spent a time τ inside the dot;
the factor e−iω jτ describes the accumulated phase. The
presence of the fluctuating potential Uc(t) contributes an
additional phase to the one-particle scattering matrix (6),

S(1)
αβ ,[z](t2, t1) = S(1)

αβ (t2− t1)exp
(
− i

h̄

∫ t2

t1
Uc(t)dt

)
, (7)

where t1 and t2 denote the arrival and escape times of
the particle (we assume escape amplitudes that depend
weakly on energy).

Next, we express the propagator K(1)
[z] through the scat-

tering matrix (7). To simplify matters, we linearize the
spectrum, ε(k) = h̄vk; a particle escaped out of the dot

then never returns. In terms of trajectories, the scatter-
ing process involves three stages: i) the ballistic motion
with velocity v towards the dot, ii) the dwell time in the
dot, and, iii) the ballistic propagation away from the dot.
We define the coordinates in the left (x < 0) and right
(x > 0) leads with respect to the left (x = 0−) and right
(x = 0+) dot boundaries and express the propagator K(1)

[z]

through the scattering matrix (7), K(1)
αβ ,[z](x, t2;y, t1) =

S(1)
αβ ,[z](τ,s)/v, where s = t1 + |y|/v and τ = t2 − |x|/v

are the arrival and escape times of the particle to and
from the dot. Similar definitions (si = t1 + |yi|/v and τi =
t2 − |xi|/v) apply to the two-particle scattering matrix:
S(2)

[z] (τ1,τ2;s1,s2) = S(1)
α1β1,[z](τ1,s1)S

(1)
α2β2,[z](τ2,s2). Tak-

ing the average with respect to the fluctuating Gaussian
field z(t), 〈z(t2)z(t1)〉= (i/2ωc)δ (t2−t1), ωc =Uc/h̄ one
could arrive to the result

S(2)(~τ;~s) = S̃(1)(τ1−s1)⊗ S̃(1)(τ2−s2)exp(−i
ωcτ12

2
),
(8)

where S̃(1) is the scattering matrix (6) with renormalized
resonance energies ε̃ j = ε j +Uc/4 and τ12 is the time the
two particles spend together in the dot,

τ12 = 1
2 (|τ1− s2|+ |τ2− s1|− |τ1− τ2|− |s1− s2|).

This two-particle scattering matrix (8) is the key result
of this Section. All effects of Coulomb interaction are
accounted for by renormalized resonance energies due
to self-interaction of individual electrons in the dot and
an additional phase accumulated by the electrons during
their simultaneous presence in the quantum dot. The self-
interaction of electrons may arise due to the screening
environment in realistic quantum dots, while in the ab-
sence of the screening (e.g. in Anderson impurity model)
one has to use the bare resonance energies ε j in Eq. (8).

Below we concentrate on a single level quantum dot
with no self-interaction present. An inverse Fourier trans-
formation provides us with the energy representation

S(2)(~ε ′;~ε) = δε1ε ′1 δε2ε ′2 S(1)(ε1)⊗S(1)(ε2) (9)

+2πδ (ε1+ε2−ε ′1−ε ′2)SUc(~ε
′;~ε),

where the second term accounts for inelastic processes
where only the total energy E = ε1 + ε2 is conserved:

SUc(~ε
′;~ε) =

(iUc/2)s⊗ s
ε1+ε2−2ε0−Uc

2 +iΓ
i Γ

2

ε1−ε0+i Γ
2

× i Γ
2

ε2−ε0+i Γ
2

(
1

ε ′1−ε0+i Γ
2

+
1

ε ′2−ε0+i Γ
2

)
. (10)

The Coulomb interaction generates additional pole
at E = 2ε0 + Uc/2 − iΓ of the total energy E. This
interaction-induced singularity cannot be obtained via a
perturbative expansion for large Uc À Γ.



The above derivation for the two-particle scattering
matrix can be generalized to N particles, where appear
an additional phase factors accounting for the pairwise
interaction of particles residing simultaneously (for a
time τ jk) on the dot,

S(N)
{α jβ j}

({τ j;s j}
)

=
N

∏
j>k

e−iωcτ jk/2
N

∏
j=1

S̃(1)
α jβ j

(τ j−s j).

The above result also holds true for a multichannel setup,
with α j, β j, j = 1, . . . ,N turning into multichannel in-
dices. In particular, the results can be straightforwardly
applied to the experimental setup [27] with two par-
allel leads feeding/emptying two capacitively coupled
dots that has been recently used to measure interaction-
induced cross correlations, see also Ref. [28].

In applying our results to realistic mesoscopic prob-
lems, we have to avoid mixing between the scattered par-
ticles and the electrons in the Fermi sea. Hence, we do
not consider situations with levels within the distance Γ
around the Fermi energy εF and assume that Uc does not
shift a level across εF; the latter allows us to ignore com-
plications due to the Kondo effect [29]. In the following,
we study the scattering problem of two single-electron
excitations created above the Fermi sea and a quantum
dot with only one resonance at ε0 above the Fermi energy
εF, ε0−εF À Γ. The scattering matrix (10) then tells, that
(the non-trivial component of) the scattered wave func-
tion involves energies near ε0 and ε+ = ε0 +Uc/2.

We start from a two-electron state Ψin(x1,x2) disen-
tangled with the Fermi sea created at time t = 0 in the
left lead and moving towards to the dot. This could be
achieved either by applying a unit-flux voltage pulse of
the Lorenzian form [23] or by using a specially designed
single electron injector [24, 25]. The scattered wave is
given by Eq. (1) and can be expressed in terms of re-
tarded variables ξ1,2 = |x1,2| − vFt, with vF the Fermi
velocity. The scattered wave to the right of the dot in-
volving tunneling of both electrons assumes the form
Ψ(ξ1,ξ2) = Ψsq(ξ1,ξ2)+ΨUc(ξ1,ξ2), with (Y ≡ y1 +y2)

Ψsq =
s2

RL

`2

∫ ξ>

ξ<

dy1

∫ 0

ξ>

dy2 eik0(ξ1+ξ2−Y )e(ξ1+ξ2−Y )/`

×[
θ(ξ2−ξ1)Ψin(y1,y2)+θ(ξ1−ξ2)Ψin(y2,y1)

]
,

ΨUc =
s2

RL

`2 eik+ξ>eik0ξ<

∫ 0

ξ>

dy1dy2 Ψin(y1,y2)

×e−ikc(Y−|y1−y2|)/2e−ik0Y e(ξ1+ξ2−Y )/` (11)

where ` = 2h̄/ΓvF is the real-space width of the scattered
wave, ξ> = max{ξ1,ξ2}, ξ< = min{ξ1,ξ2}, k0 = ω0/vF,
kc = ωc/2vF, and k+ = k0 + kc. The first term describes
the process where the electrons do not overlap in the

dot, while the term ∝ eik+ξ>eik0ξ< deals with the case
where both electrons occupy the dot simultaneously dur-
ing scattering. For electrons in a spin-triplet state with
anti-symmetric orbital wave function Ψin(y1,y2), this
term vanishes and no interaction effects survive, a conse-
quence of the Pauli principle.

Let us show that the Coulomb interaction in the dot
leads to an orbital entanglement of the two particles (for
interaction-induced spin entanglement in a quantum dot,
see Ref. [30]). Here, we concentrate on the component of
the wave function where two electrons are transmitted to
the right and estimate its degree of entanglement, which
is entirely due to the interaction in the dot. We analyze
the situation where the length of the incoming wave
packet is small with respect to `. Then the normalized
wave function on the right has the universal form:

ΨRR(ξ1,ξ2) = (2/`)eik+ξ>eik0ξ< e(ξ1+ξ2)/`, (12)

where ξ1,2 < 0. Eq. (12) describes a two-electron state
with different momenta k+ and k0 < k+, as has to be ex-
pected since the first electron escaping carries an energy
shifted up by the Coulomb interaction. The state (12) can
be rewritten in a form

ΨRR = (2/`)ei(k0+ kc
2 )(ξ1+ξ2) ei kc

2 |ξ1−ξ2|e(ξ1+ξ2)/`, (13)

reminding about the original Einstein-Podolsky-Rosen
state [11]: ΨEPR(x1,x2) = δ (x1− x2 + x0) describing the
orbitally entangled state of two particles with the fixed
relative position x0 but unknown center of mass coordi-
nate (note that this EPR state yet has to be properly nor-
malized). To quantify its entanglement, one may calcu-
late the von Neumann entropy E of the reduced density
matrix ρ(x,x′) =

∫
dx2 ΨRR(x,x2)Ψ∗

RR(x
′,x2). Instead, we

determine the purity Π(ρ) = trρ2, which is unity only for
separable states and provides the lower limit E > 1−Π.
With A≡ ikc`/(2− ikc`), we find the density matrix

ρ(ξ ,ξ ′) = (2/`)θ(−ξ )θ(−ξ ′)e(ξ+ξ ′)/`eik0(ξ−ξ ′)

×[
1+Aθ(ξ−ξ ′)(e2ξ/`− eikc(ξ−ξ ′)e2ξ ′/`)

+A∗θ(ξ ′−ξ )(e2ξ ′/`− eikc(ξ−ξ ′)e2ξ/`)
]
, (14)

that results into a purity Π = [1 + 2/(1 + (kc`/4)2)]/3.
We conclude that at finite Uc the state (13) is entangled
and the degree of entanglement saturates as the Coulomb
interaction becomes larger than the resonance width,
kc` = Uc/Γ À 1, i.e., when the energies of the escaped
particles become distinguishable. In this case one could
find Π = 1

3 and trρ3 = 2
15 and the degree of entanglement

may be estimated more precisely using an expansion
E = −tr{ρ log2 ρ} = ∑n=1

1
n tr{ρ(1− ρ)n}/ ln2 which

gives E > 1.3.



ENTANGLEMENT OF
NONINTERACTING IDENTICAL

PARTICLES

In the present section we closely follow our previous
work [15]. We discuss a scheme generating pulsed spin-
entangled electron pairs in a normal-metal mesoscopic
structure arranged in a fork geometry, see Fig. 1. In this
device, spin-entangled electron pairs are generated via
the injection of spin-singlet pairs into the source lead
from the reservoir. This entanglement is made accessi-
ble by splitting the pair into the two leads ‘u’ and ‘d’ and
subsequent projection (through the Bell measurement) to
that part of the wave function describing separated elec-
trons travelling in different leads [31]. Rather then quan-
tum pumping with a cyclic potential as in Refs. [32, 33],
our proposal makes use of definite voltage pulses gener-
ating spin-entangled electron pairs. Below we discuss a
scheme where voltage pulses of specific form accumu-
lating one unit of flux Φ0 = −c

∫
dt V (t) and applied to

the source lead ‘s’ generate pairs of spin-entangled elec-
trons which then are distributed between the two outgo-
ing leads of the fork, the upper and lower arms denoted
as ‘u’ and ‘d’. These spin-entangled electron states are
subsequently analyzed in a Bell experiment [7] involv-
ing the measurement of cross-correlations [34] between
the number of electrons transmitted through the corre-
sponding spin filters in the two arms of the fork, see Fig.
1. Using time resolved correlators, we are in a position to
analyze arbitrary forms of voltage pulses and determine
the resulting degree of violation in the Bell setup. We find
that Lorentzian shaped pulses generate spin-entangled
pairs with 50 % probability, corresponding in efficiency
to the optimal performance of one entangled pair per two
cycles as found by Beenakker et al. [33]. The reduction
in efficiency to 50 % is due to the competing processes
where the spin-entangled pair generated by the voltage
pulse propagates into only one of the two arms. In or-
der to make use of this structure as a deterministic en-
tangler, the Bell measurement setup has to be replaced
through a corresponding projection device (post-) select-
ing that part of the wave function with the two electrons
distributed between the two arms; alternatively, this post-
selection may be part of the application device itself, as
is the case in the Bell inequality measurement.

Bell Inequality with Number Correlators

The Bell inequality [13] is based on the Lemma say-
ing that, given a set of real numbers x, x̄, y, ȳ, X , Y
with |x/X |, |x̄/X |, |y/Y |, and |ȳ/Y | restricted to the in-
terval [0,1], the inequality |xy− xȳ + x̄y + x̄ȳ| ≤ 2|XY |
holds true. We define the operator of electric charge

Nd

Nu N1
N3

N2
N4

x

0

y

up lead

down lead

N
N2
N4

N1
N3

d
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(b)

a
−a

−b
b

−b
b

a
−a

s

s

d

u

FIGURE 1.

N̂i(tac) transmitted through the i-th spin detector dur-
ing the time interval [0, tac], where tac > 0 is the accu-
mulation time. The charge operator N̂i(tac) can be ex-
pressed via the electric current Îi(t) flowing through the i-
th detector, N̂i(tac) =

∫ tac
0 dt ′ Îi(t ′). In the Bell test experi-

ment, see Fig. 1, one measures the number of transmitted
electrons with a given spin polarization, Ni, i = 1, . . . ,4,
and defines the quantities x = N1 − N3, y = N2 − N4,
X = N1 +N3, and Y = N2 +N4 for fixed orientations a and
b of the polarizers (and similar for x̄ and ȳ for the orien-
tations ā and b̄), see Ref. [34]. Our Bell setup measures
the correlations Ki j(a,b) = 〈N̂i(tac)N̂ j(tac)〉 between the
number of transmitted electrons Ni, i = 1,3, in the lead
‘u’ with spin polarization along±a and their partners N j,
j = 2,4, in lead ‘d’ with spin polarization along ±b. Us-
ing the above definitions for x, y, X , and Y , we obtain the
normalized particle-number difference correlator,

E(a,b) =
〈[N̂1− N̂3][N̂2− N̂4]〉
〈[N̂1 + N̂3][N̂2 + N̂4]〉

, (15)

and evaluating the correlators for the four different com-
binations of directions a, ā and b, b̄, we arrive at the Bell
inequality

EBI = |E(a,b)−E(a, b̄)+E(ā,b)+E(ā, b̄)| ≤ 2. (16)

We proceed further by extracting in Ki j the irreducible
particle number correlators Ki j(tac) = 〈δ N̂i(tac)δ N̂ j(tac)〉
and rewrite E(a,b) in the form

E(a,b) =
K12−K14−K32 +K34 +Λ−
K12 +K14 +K32 +K34 +Λ+

, (17)

where we have defined Λ± = [〈N̂1〉±〈N̂3〉][〈N̂2〉±〈N̂4〉]
and Ki j may be rewritten in terms of irreducible cur-
rent correlators Ci j(a,b; t1, t2) = 〈δ Îi(t1)δ Î j(t2)〉 with



δ Îi(t) = Îi(t)−〈Îi(t)〉,

Ki j(tac) =
∫ tac

0
dt1dt2 Ci j(a,b; t1, t2).

The average currents are related via 〈Î1(t)〉 = 〈Î3(t)〉 =
〈Îu(t)〉/2 and 〈Î2(t)〉= 〈Î4(t)〉= 〈Îd(t)〉/2 and thus Λ− =
0, Λ+ = 〈N̂u〉〈N̂d〉. The irreducible current-current corre-
lator factorizes into a product of spin and orbital parts,
Ci j(a,b; t1, t2) = |〈ai|b j〉|2Cud(t1, t2) with a1,3 = ±a and
b2,4 = ±b. The spin projections involve the angle θab
between the directions a and b of the polarizers, 〈±a|±
b〉 = cos2(θab/2) and 〈±a|∓b〉 = sin2(θab/2), and the
Bell inequality assumes the form

∣∣∣∣
Kud[cosθab− cosθab̄ + cosθāb + cosθāb̄]

2Kud + 〈N̂u〉〈N̂d〉

∣∣∣∣≤ 1, (18)

where Kud(tac) =
∫ tac

0 dt1dt2 Cud(t1, t2) is the (irreducible)
number cross-correlator between the upper and lower
leads of the fork. The maximal violation of the Bell
inequality is attained for the standard orientations of the
detector polarizations θab = θāb = θāb̄ = π/4, θab̄ =
3π/4; the Bell inequality (18) then reduces to

EBI =
∣∣∣∣

2Kud

2Kud + 〈N̂u〉〈N̂d〉

∣∣∣∣≤
1√
2
. (19)

Number Correlators for a Single Pulse

The orbital part Cud(t1, t2) of the current cross-corre-
lator between the upper and lower leads can be calculated
within the standard scattering theory of noise [2]. We
assume that the time dependent voltage drop V (t) at
the splitter can be treated adiabatically (i.e., the voltage
changes slowly during the electron scattering time). Such
approach have first been used in the calculation of the
spectral noise power in an ac-driven system [35] and its
validity has been confirmed in several experiments [36].

In the limit of linear dispersion the irreducible current
cross-correlator Cud(t1, t2) = 〈δ Îu(x, t1)δ Îd(y, t2)〉 mea-
sured at the positions x and y in the leads ‘u’ and ‘d’ can
be splitted into two terms, one due to equilibrium fluctu-
ations, Ceq

ud(t1− t2) =
∫
(dω/2π)Seq(ω)eiω(t1−t2) with

Seq(ω) =−2e2

h
Tud cos(ωτ+)

h̄ω
1− eh̄ω/θ , (20)

and a second term describing the excess correlations at
finite voltage,

Cex
ud(t1, t2) =−4e2

h2 TuTd sin2 φ(ξ1)−φ(ξ2)
2

α(τ−τ−,θ),
(21)

with α(τ,θ) = π2θ 2/sinh2[πθτ/h̄] (θ is the tempera-
ture of electronic reservoirs), τ = t1−t2, τ± = (x±y)/vF,

ξ1 = t1−x/vF, and ξ2 = t2−y/vF. The coefficients Tu, Td,
and Tud denote the transmission probabilities from the
source to the ‘up’, ‘down’ leads, and between the ‘down’
and the ‘up’ leads.

The equilibrium correlator Ceq
ud describes the correla-

tions of the electrons in the Fermi sea propagating bal-
listically from lead ‘u’ to lead ‘d’ (or vice versa) with
the retardation τ+ = (x1 + x2)/vF. The corresponding
equilibrium part of the particle-number cross-correlator,
Keq

ud =
∫ tac

0 dt1dt2 Ceq
ud(t1− t2) then takes the form

Keq
ud ≈

e2

π2 Tud ln
tac

τ
, τ = max{h̄/εF,τ+}, (22)

where we have assumed the zero temperature limit and
an accumulation time tac À τ . The logarithmic diver-
gence in tac reduces the violation of the Bell inequal-
ity Eq. (19) at large accumulation times and one has to
suppress the equilibrium correlations between the upper
and the lower leads in the setup. This can be achieved
via a reduction in the transmission probability Tud, how-
ever, in the fork geometry of Fig. 1(a) the probability
Tud cannot be made to vanish. Alternatively, one may
chose a setup with a reflectionless four-terminal beam
splitter as sketched in Fig. 1(b) with no exchange am-
plitude between the upper and lower outgoing leads and
thus Keq

ud = 0.
Next, we concentrate on the excess part Kex

ud of the
particle-number cross-correlator 〈N̂u(tac)N̂d(tac)〉. Note
that the excess fluctuations are the same for both setups
Fig. 1(a) and (b) and we can carry out all the calcula-
tions for the fork geometry. We consider a sharp volt-
age pulse applied at time t0, 0 < t0 < tac, with short
duration δ t. The total accumulated phase φ(t) then ex-
hibits a step-like time dependence with the step height
∆φ = φ(t0 + δ t/2)− φ(t0− δ t/2) = −2πΦ/Φ0, where
we have introduced the Faraday flux Φ = −c

∫
V (t)dt

and Φ0 = hc/e is the flux quantum. The excess part of
the particle-number cross-correlator Kud then takes the
form (we consider again the zero temperature limit)

Kex
ud =− e2

π2 TuTd

tac∫

0

dt1dt2
sin2[(φ(t1)−φ(t2))/2]

(t1− t2)2 . (23)

For a sharp pulse with δ t ¿ t0, tac we can identify two
distinct contributions arising from the integration do-
mains |t1− t2| ¿ δ t and |t1− t2| À δ t, cf. Refs. [5, 37];
we denote them with K< and K>. Introducing the av-
erage and relative time coordinates t = (t1 + t2)/2 and
τ = t1 − t2 and expanding the phase difference φ(t1)−
φ(t2) = φ(t +τ/2)−φ(t−τ/2)≈ φ̇(t)τ , the first contri-
bution K< reads

K< ≈− e2

2π
TuTd

tac∫

0

dt |φ̇(t)|. (24)



Assuming φ(t) is a monotonic function of t Eq. (24) can
be rewritten in terms of the Faraday flux Φ,

K< =−e2TuTd
|Φ|
Φ0

. (25)

Assuming the Lorenzian form of the voltage pulse curry-
ing for integer n = |Φ|/Φ0 exactly n (spinless) electrons
[23], the particle-number cross-correlator Kex

ud describes
the correlations arising from the n additional particles
pushed through the fork by the voltage pulse V (t).

The second contribution K> to Kex
ud originates from the

time domains 0 < t1(2) < t0−δ t/2 and t0 +δ t/2 < t2(1) <
tac, where |φ(t1)−φ(t2)|= 2πΦ/Φ0, hence

K> ≈−2e2

π2 TuTd sin2 πΦ
Φ0

ln
tm
δ t

; (26)

here, we have kept the most divergent term in the mea-
surement time tm = tac − t0, the time during which the
pulse manifests itself in the detector. The above expres-
sion describes the response of the electron gas to the sud-
den perturbation V (t); the logarithmic divergence in the
measurement time tm can be interpreted [37] along the
lines of the orthogonality catastrophe [38], with the iso-
lated perturbation in space, the impurity, replaced by the
sudden perturbation in time. The periodicity of the re-
sponse in the Faraday flux Φ is due to the discrete nature
of electron transport as expressed through the binomial
character of the distribution function of transmitted par-
ticles [5, 37]. Remarkably, the above logarithmically di-
vergent contribution to Kex

ud vanishes for voltage pulses
carrying an integer number of electrons.

Finally, the average number of transmitted (spinless)
particles are given by 〈N̂u(d)(tac)〉 =

∫ tac
0 dt 〈Îu(d)(x, t)〉,

where within the scattering matrix approach,

〈Îu(d)(x, t)〉=
e
h

Tu(d) eV (t− x/vF), (27)

and hence,

〈N̂u(d)(tac)〉= eTu(d)
Φ
Φ0

. (28)

Pulse with integer flux

Substituting the above expressions for the particle-
number cross-correlators and for the average number of
transmitted particles into (19) we arrive at the following
general result for the Bell inequality

EBI =
∣∣∣∣

n+(2/π2)sin2(πn) ln(tm/δ t)
2n2−n− (2/π2)sin2(πn) ln(tm/δ t)

∣∣∣∣ . (29)

For Lorenzian voltage pulse with integer n all logarith-
mic terms vanish, leaving us with the Bell inequality

EBI =
∣∣∣∣

1
2n−1

∣∣∣∣≤
1√
2
, (30)

which we find maximally violated for n = 1 and never
violated for larger integers n > 1 — any additional par-
ticle accumulated in the detector spoils the violation of
the Bell inequality. Furthermore, this violation is inde-
pendent of the transparencies Tu, Td and hence universal;
moreover, the Bell inequality (30) does not depend on
duration of the voltage pulse but involves only the num-
ber of electrons n carried by it.

The Lorenzian voltage pulse with n = 1 pushes two
electrons with opposite spin polarization towards the
beam splitter. Such a pair appears in a singlet state and
can be described by the wave function Ψ12

in = φ 1
s φ 2

s χ12
sg

with the spin-singlet state χ12
sg = [χ1

↑χ2
↓−χ1

↓χ2
↑]/
√

2; φs is
the orbital part of the wave function describing a parti-
cle in the source lead ‘s’ and the upper indices 1 and 2
denote the particle number. This local spin-singlet pair is
scattered at the splitter and the wave function Ψ12

in trans-
forms to Ψ12

scat = t2
suφ 1

uφ 2
u χ12

sg + t2
sdφ 1

dφ 2
d χ12

sg + tsutsd[φ 1
uφ 2

d +
φ 1

dφ 2
u ]χ12

sg , where the last term describes two particles in
a singlet state shared between the upper and lower leads
of the fork. The Bell inequality test is only sensitive to
pairs of particles propagating in different arms, imply-
ing a projection of the scattered wave function Ψ12

scat onto
the spin-entangled component. Thus the origin of the
entanglement is found in the post-selection during the
cross-correlation measurement effectuated in the Bell in-
equality test [31]. From an experimental point of view
it may be difficult to produce voltage pulses driving ex-
actly one (spinless) particle n = 1. However, as follows
from the full expression Eq. (29), for a sufficiently small
deviation |δn| = |n− 1| ¿ 1 the logarithmic terms are
small in the parameter (δn)2 and thus can be neglected,
provided the measurement time tm satisfies the condi-
tion (δn)2 ln(tm/δ t)¿ 1. The same argument applies to
the case of pumping with an alternating signal [32, 33].
Even if the two-particle Bell inequality may be violated
when the average injected current vanishes still it does
not guarantee the creation of entangled electron pairs, see
Ref. [15] for details.

CONCLUSION

We have studied two different setups where entangle-
ment of an electron pair is produced either by involv-
ing interaction between electrons or by projective mea-
surement or post-selection. In contrast to the first method
the entanglement due to post-selection appears only for
the indistinguishable particles. In the interacting case a
singlet electron pair is scattered on a single level quan-
tum dot with Coulomb interaction. The resulting two-
particle scattering state becomes orbitally entangled for
Uc À Γ (Uc - Coulomb repulsion energy, Γ is the reso-
nance width). In order to quantify the produced entan-



glement we have estimated the von Neumann entropy of
the single-electron density matrix ρ . Although the den-
sity matrix in principle can be measured directly we have
not described the realistic scheme for such measurement.
Calculating the purity Π = tr{ρ2} and tr{ρ3} the degree
of entanglement of the scattered wave function compo-
nent where both electrons are transmitted through the dot
can be estimated as E > 1.3 of the spin-singlet entangled
state.

In the setup involving a post-selection the following
steps lead to the appearance of the spin-entangled state
[31]: i) the Fermi statistics allows one to extract a elec-
tron spin-singlet state with the same orbit out of the
Fermi sea; ii) the beam splitter directs the mixed prod-
uct state into the two leads thus organizing their spatial
separation, iii) a coincidence measurement projects the
mixed product state onto its (spin-)entangled component
describing the electron pair split between the two leads.
In this situation we have suggested a realistic scheme for
the Bell test involving the measurement of particle num-
ber cross-correlators. It is shown that the corresponding
Bell inequality is maximally violated indicating the max-
imally entangled spin state of the electron pair.

Both these schemes rely on the existence of the elec-
tron source which allows one to sent a finite number of
electrons in a pure quantum state, see Ref. [24] for theo-
retical proposal and Ref. [25] for recent experimental ad-
vances in this direction. Alternatively [23] one may apply
to a electronic reservoir a voltage pulse of the Lorenzian
form with integer Faraday flux Φ = −c

∫
dtV (t) = nΦ0

extracting exactly n electrons (per spin component) not
entangled with the Fermi sea.
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