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Abstract. We outline the physical principles underlying the design of finite size superconducting arrays that may serve
as protected qubits. These systems are built from fully frustrated rhombi consisting of four Josephson junctions; their low
energy spectrum is composed of localized Z2 charge excitations and π phase vortices. Protection from both the phase and flip
errors requires a balance between charging and Josephson energies; optimization of the array size results in the hierarchical
construction of these arrays. We have developed computational methods, based on a combination of perturbation theory and
numerical diagonalization, which allow us to compute the global phase stiffness and the energy of localized charge excitations
in various geometries. We present the most promising designs, which are currently under experimental investigation.
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INTRODUCTION

The goal of this paper is to identify and to compute
the properties of the small to medium sized Josephson
junction arrays which spectrum contains two low energy
states that are protected from the external noise and can
be used as protected qubits for quantum computation.
Such arrays provide a minimalistic implementation of
the idea of topologically protected quantum computation
that was introduced by Kitaev in his seminal paper [1]
and developed for large and medium sized Josephson
junction arrays in [2],[3], [4]. The mathematical models
describing the low energy dynamics of these arrays can
be also regarded as the Hamiltonian implementation of
quantum error correction algorithms. [5]

The elementary building block of all arrays considered
here is the four junction superconducting loop threaded
by the magnetic flux Φ = Φ0/2 that we shall call rhom-
bus in the following, see Fig. 1. The effective Josephson
energy V (θ) of the ideal rhombus is a π- periodic func-
tion of the phase difference across it; most of our discus-
sion below is applicable to any element that has approx-
imately this property. In the case of rhombus, V (θ) has
two minima at θ =±π/2, separated by π modulo 2π . In
the absence of transitions between these states induced
by quantum fluctuations the ground state of each ele-
ment is doubly degenerate. The π- periodicity for V (θ)
can be interpreted in simple physical terms by noting
that Fourier decomposition of V (θ) = ∑n Aneinθ con-
tains only even harmonics, that is An = 0 for all odd
values of n. The absence of all odd harmonics and, in

particular, the suppression of the fundamental oscillation
(n = ±1) means that single Cooper pairs cannot tunnel
across the individual element and thus are localized. For
the element realized as a rhombus threaded by half a
flux quantum, the localization occurs due to the cancel-
lation between the probability amplitudes for a Cooper
pair to follow the upper and the lower arms of the rhom-
bus while tunneling across. A single rhombus is not pro-
tected against local noise: flux deviations from the Φ0/2,
scatter of junction parameters lead to non-zero tunneling
amplitude of a single pair (odd harmonics An 6= 0) which
lifts the degeneracy of the two states. Fluctuations of this
amplitude lead to the fast dephasing of such elementary
qubit.

This description of a single π- periodic element and
its dephasing suggests that a stronger protection against
flux noise may be achieved by composing N such ele-
ments in a series which makes the single pair tunneling
exponentially small. Indeed, the global state of the sys-
tem is described by the phase difference φ between the
ends of the chain which is equal to the sum φ = ∑

N
j=1 θ j

of the phase differences, θ j across individual elements.
The energy of the system is also a π- periodic function
of φ for the chain composed of ideal elements. Let us
first assume that the quantum fluctuations of φ are small,
which can be achieved in practice by introducing a large
capacitance between the two ends of the chain. In this
case, the system has two global states corresponding to
two minima of the total energy as a function of the phase
φ . Because the absolute value of the phase is not measur-
able these two states become ideally protected from the



decoherence in the limit N→∞ provided that the energy
barrier separating them remains finite. For a finite L this
protection is only as good as a suppression of a single
pair tunneling along the whole chain. This suppression is
possible thanks to a remarkable property of arrays com-
posed of π- periodic elements: in these arrays the parity
of the number of Cooper pairs on each node joining two
or more elements becomes a good quantum number in
the absence of external noise or any static imperfection.
As will be explained later, these local conserved quanti-
ties can be viewed as the eigenvalues of local Z2 symme-
tries generators that translate the phase at a given node
by π while leaving phases on other nodes unchanged.

The protection provided by a single chain depends
crucially on the ratio EC/EJ of the charging energy EC
to Josephson energy EJ. In the limit when the charg-
ing energy EC is much smaller than the Josephson en-
ergy EJ, the quantum fluctuations of phase variables are
small and therefore, the energy difference between the
even and odd parity states on a given node is small as
well. In this limit the noise and imperfections have large
effect on these almost degenerate states and can trans-
fer the Cooper pair across. The increase in EC/EJ in-
creases quantum phase fluctuations, and yields a finite
energy gap ∆ between the states with different parities.
In the presence of flux noise of typical magnitude δΦ

per rhombus, a single Cooper pair tunneling amplitude
across each rhombus of order δΦ

Φ0
EJ is generated. The

dangerous process that transfers a single Cooper pair
across the whole system arises only at order N in pertur-
bation theory, therefore its amplitude is proportional to
( δΦ

Φ0
EJ)N/∆N−1, which can be made arbitrarily small by

choosing N large enough as long as δΦ

Φ0

EJ
∆

< 1. This basic
protection mechanism has been recently demonstrated
experimentally by the observation of a strong reduction
of the single Cooper pair tunneling amplitude for a flux
per rhombus Φ close to Φ0/2 in a system with N = 4,
compared to one with N = 2. [6]

So far, we discussed how to achieve protection against
processes that lift the degeneracy between the two clas-
sical ground states identified by the value of the phase
variable φ . We now turn to the tunneling processes be-
tween the classical ground states which are made possi-
ble by the finite capacitance across the chain. Their ef-
fect is to lift the degeneracy in the ground-state doublet
and to select the basis in which the operator giving par-
ity of the number of Cooper pairs transferred across the
whole chain is diagonal. The amplitude of this process
is sensitive to the electrostatic potential across the whole
chain which might fluctuate. This would lead to the fluc-
tuations of the energy splitting and thus dephasing. As
we already pointed out, the tunneling might be inhibited
by large capacitance between the ends of the chain. How-
ever, such capacitance would also imply that correspond-

ing charging energy is small which would make it diffi-
cult to avoid thermal activation in the realistic setup. It
would be very desirable to reduce the tunneling between
classical ground states exponentially fast in the system
size, as for the single Cooper pair tunneling along the
whole chain discussed above. Note that a process that
translates φ by π may be viewed as a single π vortex
crossing the chain. A natural way to suppress such events
is to couple M identical Z2 chains in parallel. As we
shall see, there is to some extent a conflict between the
two requirements of imposing simultaneously a good lo-
calization of single Cooper pairs through a large gap ∆

for a Z2 charge in the bulk of the array, and a large en-
ergy barrier, 2E2 for a π vortex crossing: the former re-
quires rather large quantum phase fluctuations (thus large
EC/EJ) and large chain length N whereas the latter needs
a large phase stiffness so that EC/EJ and the chain length
cannot be too large. To resolve this conflict we shall use
the hierarchical construction which uses iteratively se-
ries and parallel compositions of arrays whose building
blocks are rhombi threaded by half a flux quantum.

Note that whereas it is possible to suppress completely
single Cooper pair tunneling in ideal conditions in a
single chain by having exactly half a flux quantum and
a perfect mirror symmetry along the diagonal for each
rhombus, reduction of the π vortex tunneling amplitude
is only achieved by choosing a low enough value of
EC/EJ and remains non-zero for any non-zero value of
this parameter. In other words, for these arrays there is
no analogue of the local Z2 symmetry that would prevent
single π vortex tunneling; these arrays do not implement
exactly the self dual model proposed by Kitaev [1]
Nevertheless, as we shall demonstrate, the proper choice
of the array geometry that involves parallel chains of
rhombi and a proper choice of the EC/EJ ratio allow
for the exponentially high protection against any local
noise for large arrays and a very strong (power law) noise
suppression for medium size ones.

The medium sized arrays most promising for imple-
mentation are characterized by large gap ∆ and large π

vortex barrier, 2E2. Because both are the functions of
EC/EJ we compare different designs by values of the gap
∆ at EC/EJ that correspond to the crossing of these two
curves, i.e. ∆ = E2. Becuase the medium sized arrays are
too large for direct numerical diagonalization in the rele-
vant parameter regimes, in order to compute this impor-
tant parameter we shall have to develop the approximate
analytical and numerical methods for this problem.

The protection provided by the system of parallel
chains of π- periodic elements can be understood as the
Hamiltonian version of the error correction based on the
repetition code. In this code one uses N×M faulty qubits
to encode one logical qubit. At the first stage of this con-
struction one forms 2 classical states |C0 > in each of the
N qubits: |C0 >= |00...0 > and |C1 >= |11...1 >. This



classical repetition protects against X errors that change
0 into 1 or backwards. At the second stage one forms
quantum superposition of these two states |±>= (|C0 >
±|C1 >) in each of these M rows and takes the direct
product of the resulting states:

|±〉=


1√
2
(|0000〉1±|1111〉1)⊗

1√
2
(|0000〉2±|1111〉2)⊗

1√
2
(|0000〉3±|1111〉3)⊗

1√
2
(|0000〉4±|1111〉4)

 (1)

This step protects against Z-errors that change the rela-
tive phase of individual |0 > and |1 > states and, thus,
flip |±> states.

In order to establish the correspondence between the
array of Josephson junctions and the array of qubits we
identify the rhombus states |±π/2〉 with the states of
spin 1/2 with Sz = ±1/2, the low energy states of the
rhombi array are equivalent to the states of the spin array
of the same size. The actual Josephson circuit has also
high energy modes with Ep ∼

√
8EJEC, which are sepa-

rated from the low energy states by a large gap and thus
can be mostly ignored. Identifying |0〉 (|1〉) of the faulty
qubit with the even (odd) states of individual rhom-
bus ( |e〉 = (|+π/2〉+ |−π/2〉)/

√
2, |o〉 = (|+π/2〉 −

|−π/2〉)/
√

2), we see that (|0000〉1±|1111〉1)/2 state of
a qubit chain corresponds to state rhombi chain in which
all rhombi are in even or odd states with the phase differ-
ence across the chain ±π/2 respectively.

The idea of the physical array construction is therefore
to ensure that its ground state corresponds to the ’fer-
romagnetic’ state of one chain in the charge (odd/even)
basis and to the equal phase difference across different
the chains. The former is ensured by the Hamiltonian
H = ∑(i,i′) σ x

i σ x
i′ where the sum is over all pairs (i, i′) be-

longing to the same chain. The low energy states of each
chain correspond to the codewords in which all spins
point in the same direction along x-axis, i.e. to ∏i |e〉i
and ∏i |o〉i states in each chain. The parallel connection
of the chains ensures that all signs (+ or−) in (1) are the
same, thereby protecting against Z−errors.

Similarly to a repetition code that can determine up
to (N− 1) Z-errors and (M− 1) X-errors in the system
of M chains of length N, the Hamiltonian version that we
discuss in this paper is protected to the order of N against
the dephasing and to the order of M against the decay.
The main difference between the physical systems that
we discuss here and the mathematical error correction
models is due to the existence of other low energy modes
that are ignored in their mapping to the chain of 1/2
spins.

Although this is not directly relevant for engineering
protected qubits, we briefly mention here that these ar-
rays characterized by the two types of elementary ex-

citations (Z2 charges and π vortices) are quite interest-
ing systems from the viewpoint of statistical physics, be-
cause the unbroken local Z2 symmetry leads to the de-
struction of the usual Cooper pair condensate: on any
island j connecting two rhombi in the bulk, the val-
ues φ j and φ j + π for the local phase are equiprobable
and therefore the superconducting order parameter 〈eiφ j〉
vanishes. On the other hand, 〈ei2φ j〉 should be non-zero
in order to prevent the proliferation of π vortices. These
arrays therefore realize condensates of pairs of Cooper
pairs without the condensation of single Cooper pairs,
a regime that may be qualified as superconducting ne-
matic. [2, 7, 8]

MODEL AND ITS LOCAL Z2
SYMMETRY
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FIGURE 1. Schematics of the simplest protected array
(lower pane) and the microphotogaph of its implementation
in the Al nano-structure (upper pane). The basic element
of all protected arrays the rhombus formed by four junc-
tions (crosses) and four islands (dots), e.g. islands 0,1,2,3 or
0,4,5,6 which is frustrated by magnetic flux equal to one half
of the flux quantum. In the implementation the islands are hor-
izontal or vertical lines, the junctions are formed at each inter-
section. The line style in the schematics represents the choice
of vector potentials used to encode the magnetic flux: thick
lines denote zero vector potential while dashed lines denote
vector potential that shifts by π the relation between current
and phase difference accross such junctions. As explained in
the text, the unique properties of the arrays are due to the local
Z2 transformations, such as the one centered around site 0 that
flips the chiralities of these two rhombi without changing the
phases at the two outer sites labelled by 1 and 6.



We shall consider Josephson junction arrays described
by the standard Hamiltonian:

H = 4EC ∑
i j

n̂i(C−1)i jn̂ j−EJ ∑
〈i j〉

Ji j cos(φ i−φ j) (2)

where Ci j is the dimensionless capacitance matrix
measured in units of the capacitance C of individual
junctions, and the charging energy EC is defined by
EC = e2/(2C) (corresponding to single electron charg-
ing energy). The dimensionless matrix Ji j encodes the
Josephson couplings: Ji j = ±1 when i and j refer to
nearest neighbor sites, and Ji j = 0 otherwise. The signs
in the Ji j variables are required in order to implement
the fully frustrated array with one half of a flux quantum
per elementary plaquette. In this case, the product of
Ji j’s over each such plaquette has to be equal to -1. EJ
is the Josephson coupling energy of individual junctions.
The number operators q̂ j are conjugate to the local
phases φ j, namely: q̂ j = 1

i
∂

∂φ j
. It will be also convenient

to write down the corresponding Lagrangian, because
it involves the capacitance matrix that is a much more
local object than its inverse:

L = ∑
〈i j〉

1
16EC

(φ̇ i− φ̇ j)
2 +EJ ∑

〈i j〉
Ji j cos(φ i−φ j) (3)

To simplify the notation, we have assumed h̄ = 1 in the
expression of the kinetic term.

For the computation of large arrays and for the qual-
itative discussion of their properties it is convenient to
model each fully frustrated rhombus by an effective junc-
tion that transfers coherently pairs of Cooper pairs. The
Josephson energy of such an element (that will be called
a Z2 junction) may be written as −E2 cos2(φ i−φ j) and
its charging energy is incorporated in the Lagrangian by
the same term 1

16Eeff
C

(φ̇ i− φ̇ j)
2 as before. Note that in the

classical limit, Eeff
C = EC because a rhombus involves two

chains of two elementary junctions in parallel.

Local Z2 symmetry

As we have emphasized in the Introduction, we shall
construct protected qubits from networks of supercon-
ducting islands connected by fully frustrated rhombi.
In such systems single Cooper pairs are localized in
Aharonov-Bohm cages centered at each node of the net-
work and the parity of the number of Cooper pairs con-
tained in each cage is conserved. [8] These conserved
quantities can be viewed as the generators of local dis-
crete Z2 symmetries which we now define. Let us for in-
stance consider the geometry of Fig. 1 with a pair of two
adjacent rhombi that share the node labelled by 0.

FIGURE 2. The array with twelve elementary rhombi
(shown as crossed circles), organized in three chains of four
rhombi coupled by a central island in the middle.

The local Z2 transformation centered on this node flips
simultaneously the chiralities of the two rhombi adjacent
to it while keeping fixed the phases of the outer sites 1
and 6. More precisely, it corresponds to the simultaneous
changes:

φ 0 → φ 0 +π

φ 2 → φ 3

φ 3 → φ 2

φ 1 → φ 1

φ 4 → φ 5 +π

φ 5 → φ 4 +π

φ 6 → φ 6

Clearly, such transformation leaves invariant the Joseph-
son energy associated to this circuit, that is:

HJ = −cos(φ 1−φ 2)− cos(φ 2−φ 0)− cos(φ 1−φ 3)
+ cos(φ 3−φ 0)− cos(φ 0−φ 4)− cos(φ 4−φ 6)
− cos(φ 0−φ 5)+ cos(φ 5−φ 6)

It also preserves the kinetic terms in the Lagrangian, be-
cause the above transformation simply permutes the time
derivatives of phase variables according to the mirror
symmetry along the axis joining the central site 0 with
the two extremal points 1 and 6. Note that experimen-
tally, this requires a rather high reproducibility of the
junction parameters across the array, because we need
a perfect symmetry between the upper and lower sides of
any rhombus.

It is also convenient to express the same symmetry
operation in the charge basis. It sends a wave function
ψ of q0,...,q6 into the new wave function ψ ′ defined by:

ψ ′(q0,q1,q2,q3,q4,q5,q6) =

eiπ(q0+q4+q5)
ψ(q0,q1,q3,q2,q5,q4,q6) (4)

The presence of the phase factor eiπq0 suggests that this
unitary operation is directly related to the parity of the
number of Cooper pairs on the node 0. However, this



operation is slightly more complicated, because it also
involves the mirror symmetry along the horizontal diag-
onals of the two rhombi and additional π translations of
phases at sites 4 and 5. A more precise connection can
be obtained in the framework of a Bose Hubbard model.
There, the Josephson coupling is represented by a sin-
gle boson hopping process. It is therefore possible to di-
agonalize this Hamiltonian (in the presence of the mag-
netic field of half flux quantum per rhombus); this yields
Wannier orbitals localized in finite clusters of sites cen-
tered on the nodes that share two or more rhombi. In this
version, the local Z2 generator centered at a given node
counts precisely the parity of the number of bosons in the
localized orbitals centered on this node. [8] In this paper,
we shall not use the Bose Hubbard model, but rather the
quantum rotor Hamiltonian version Eq. (2).

In this work we shall mostly consider coupled chains
of rhombi and some generalizations such as the one de-
picted on Fig. 2. For this array we have six binary flips as-
sociated to the middle islands of the six two rhombi sub-
chains, and one six-fold flip of all the six rhombi adjacent
to the central island. It is easy to generalize the precise
definition of the local Z2 flips given above to the case of
a node connected to an arbitrary number of rhombi. One
can then check that two local Z2 transformations centered
on different nodes mutually commute.

01
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3

FIGURE 3. (Color online) An example of a non local Z2
unitary transformation in an array with three coupled chains
of four rhombi. The red dashed dotted line indicates the set of
rhombi which chirality flips under the transformation. Phases
on all islands located on the left (resp. right) of this line are
unchanged (resp. shifted by π). For sites located precisely on
the line, they exchange their phase with the site opposite to
them on the same rhombus. For example, phases at sites 2 and
3 are permuted.

As we discuss below, the low energy spectra of large
arrays can be reproduced in a coarse grained picture in
which the array is built from effective Z2 junctions, i.e.
elements doubly periodic in the phase variable. In this
picture the local symmetries take a simpler form, because
the Z2 generator based at node j shifts φ j by π while
leaving all the other phases unchanged. In this situation,
it is exactly the operator that counts the parity of the
number of Cooper pairs on this node.

For the discussion of protected qubits, it is also impor-
tant to mention the existence of non local Z2 symmetries
in which the local chirality variables are flipped for a sub-
set of rhombi located on a line that cuts the array in two
parts. An example is shown on Fig. 3. For a rhombus on
this line, such as the one with sites labelled 0,1,2 and 3 on
the figure, the transformation rules are as before, namely:

φ 0 → φ 0 +π

φ 2 → φ 3

φ 3 → φ 2

φ 1 → φ 1

Phases on sites located on the left of the line are un-
changed whereas those on sites located on the right are
shifted by π . As a result the total phase difference π be-
tween the right and the left boundaries is also shifted by
π . As mentioned in the Introduction, the physical mean-
ing of such symmetry is the absence of any process that
transfers an odd number number of Cooper pairs from
one boundary to the other.

HIERARCHICAL CONSTRUCTION

Motivation

FIGURE 4. Hierarchical construction: the element at level
n + 1 is obtained by connecting in parallel K identical chains
made of two elements at level n

As discussed in the Introduction, a large number of
parallel chains of rhombi provides a good protection
from the environment provided that quantum fluctuations
of rhombi in each chain are strong but the phase dif-
ference between the ends of the chains does not fluctu-
ate due to a large number of chains. The last require-
ment is not easy to satisfy for moderately long chains
because the phase stiffness decreases exponentially with
the length. [9] The alternative solution is to couple chains
in the transverse direction. If this coupling is achieved
by rhombi as well, one ends up with the full blown dec-
orated lattice. Although possible, this design has a dis-
advantage that quantum fluctuations need to be strong
enough to result in a simultaneous flip of many rhombi
that have a common site and requires a large number
of rhombi, all this is not easy to achieve practically.



The attractive alternative that we explore here is to use
the hierarchical construction that does not involve ad-
ditional elements in transverse direction. This construc-
tion has two substeps at each level. First, two Joseph-
son elements formed at nth level are connected in series
forming a weaker Josephson element. Second, K such
Josephson elements are connected in parallel compensat-
ing this weakening and forming an effective element of
the (n+1)th level. The idea is to choose the parameters
so that the effective Josephson energy E2 cos(2θ) and
charging energy keep constant ratio at each level. This
implies that quantum fluctuations remain strong but do
not wash out the phase stiffness in a large structure. Pro-
vided that the E1 cos(θ) term was significantly smaller
than E2 cos(2θ) at the first stage of the hierarchy, it will
decrease exponentially with the level.

Hierarchical construction

The recursion relation that relates the energy scales at
the next hierarchy level to the ones at the previous level
can be obtained analytically in the limit of large branch-
ing ratio, K. In this limit, E2/EC for the individual junc-
tion is small which allows to treat them perturbatively.

A general (super) junction can be characterized by
three parameters:

H =−E2 cos2θ −E1 cosθ +4ECq2

where q is the charge conjugate to the phase measured in
units of 2e. Two such junctions connected in series give
a Josephson energy:

H =−E ′2 cos2θ −E ′1 cosθ +4E ′Cq2

Generally, one expects that the parameters of this ele-
ment are some functions of the energies characterizing
the original junctions:

E ′2 = g2(
E2

EC
,

E1

EC
)EC (5)

E ′1 = g1(
E2

EC
,

E1

EC
)EC (6)

E ′C = h(
E2

EC
,

E1

EC
)EC (7)

In the following we shall be mostly interested in the limit
of very small E1

EC
� 1. In this limit g2 becomes a function

of only one variable, E2
EC

. Perturbative expansion gives:

E ′2 =
1
8

E2
2

EC
(8)

E ′1 =
1
2

E2
1

EC
(9)

E ′C = 2EC (10)

for sufficiently large EC (perturbation theory in E2/EC).
In this limit of small E2/EC the charging energy of the
two elements connected in series is twice EC.

Combining K such chains in parallel we get that at the
next stage of the hierarchy:

E(n+1)
C = (2/K)E(n)

C (11)

E(n+1)
2

E(n+1)
C

=
K2

16

[
E(n)

2

E(n)
C

]2

(12)

One can treat the block formed by 2K Josephson ele-
ments as a single junction characterized by only one de-
gree of freedom provided that the energy scales at the
next step are much smaller than the ones at the previous
step. This is satisfied if K � 1 because in this limit the
typical energy scales are set by E(n)

C that decreases with
the level n. Thus, in this limit, the equations (11-12) be-
come exact and show the (unstable) fixed point:

E(n)
2

E(n)
C

=
16
K2 (13)

At realistic values of the branching number K = 2−
4 one expects two types of corrections to this simple
recursion. First, the perturbation expansion that gives (8)
and E ′C = 2EC is not exact. Second, characteristic energy
scales at the next level are not much smaller than the
ones at the previous level and that makes coarse graining
only approximate. We now discuss the importance of
these corrections in turn. Calculation of the next order
in perturbation theory gives:

E ′C =

[
1− 1

16

(
E2

EC

)2
]

2EC (14)

E ′2 =

[
1− 7

256

(
E2

EC

)2
]

1
8

E2
2

EC
(15)

that shows that the corrections to the perturbative result
become significant for E2 & 2EC. Thus, the equation for
the fixed point (13) remains approximately valid down to
K = 3. At small branching numbers the time scales do
not grow fast with the level and this introduces an ad-
ditional source of corrections. To check the accuracy of
the recursion relations and the perturbative approxima-
tion we performed a numerical study comparing the ef-
fective Josephson energy E2 expected from the recursion
relations at the second level of hierarchy with the numer-
ical diagonalization of the Hamiltonian that describes the
system shown in Fig. 6a. We check separately the accu-
racy of the perturbative expansion by comparing the re-
sults (8), (15) with the diagonalization of two contacts
connected in series, and the accuracy of the recursion by
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FIGURE 5. (a) Amplitude of the second harmonics g2(x) of the Josephson energy versus phase difference across two identical
E2 cos(2θ) junctions connected in series where x = E2/EC. (b) The energy of the lowest excited state corresponding to one Cooper
pair at the middle island.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

EJ/EC

E2/EC

FIGURE 6. (a) The stage intermediate between levels 1 and 2 of the hierarchy with K = 3 branching made from the cos2θ

elementary blocks used for testing the validity of the recursive approximation. (b) Exact diagonalization results for the effective E2
(in the units of bare charging energy) of this element is shown as dots. The curves correspond to different approximate schemes.
The full line is the result of the recursive approximation discussed in the text applied twice. The dotted line is the result of the
diagonalization of the series of four junctions with additional capacitance K− 1 in the middle and an overal multipying factor of
K2, according to the the form suggested by the perturbation theory in E2/EC.

comparing the effective Josephson energy E2 found nu-
merically with

E2 = g2(
K2g2(E2/EC)

h(E2/EC)
)

1
K

h(E2/EC)EC (16)

where g2(E2/EC) was evaluated numerically (see
Fig. 5a) and we used the perturbative result
h(x) ≈ 2 − 1/8x2. The result of the comparison is
shown in Fig. 6b, where one observes that the recursive
approximation (16) reproduces the exact results with a
good accuracy even for K = 3 in the physically important
range of the parameters 0 < E2/EC < 3. We note that
the results deviate lightly at low values, the reason can
be understood by comparing the results obtained in the
recursion approximation with the direct perturbation
theory for the second level device.

The lowest order of the perturbation theory correspond
to a sequence of charge tunnelings and charge-hole cre-
ations each of which moves charge in the same direction.
The constraint that the process should occur with the
minimal number of steps implies that a given sequence
involves only one (out of K) branches of the device at

each side. The remaining K−1 branches provide the ad-
ditional capacitance attached to the middle island. Thus,
in this order, the circuit can be replaced by a series of
four basic elements, with the central island capacitively
coupled to the ground, provided that the final result is
multiplied by K2. In the limit of large K� 1 the energy
of the charge at the middle island is low in 1/K.

The condition that process occurs in the minimal num-
ber of steps does preclude intermediate states that con-
tain more than one charge or hole. However, in the limit
of large K the dominant contribution comes only from
the processes that involve the intermediate state in which
the only charge is located at the middle island because
this state has parametrically smaller charging energy
(16/K)EC. Keeping only these terms reproduces exactly
the recursion result in which g2 and h functions are ap-
proximated by their lowest order expressions (8), (10):

E pert
2 ≈ K3

210

(
E2

EC

)4

EC (17)

At finite values of K, three effects combine to modify
this result. First, the expression for g2 at the first step



has to be modified to take into account the effect of
the larger structure on the energy of virtual charged
excitations between two elementary blocks. Specifically,
the prefactor 1/8 now becomes 1/(8 + 4/K). Second,
some processes do not involve intermediate states with
the charge located only on the middle island. Summing
these effects, we get:

E pert
2 =

K4(K +2)
28(2K +1)2

(
E2

EC

)4

EC (18)

Third, the energy of the intermediate state with one
charge on the middle island differs from (16/K)EC due
to capacitance renormalization by virtual processes, but
this occurs at higher order in E2/EC. For physically rele-
vant K = 3 the exact perturbation result (18) differs from
the recursive approximation (17) by 20%.

Medium size rhombi arrays

For experimental implementations of protected qubits
with superconducting circuits, the simplest way to get
a π periodic element is to use a rhombus frustrated by
half a flux quantum. In this sub-section, we shall dis-
cuss computational issues raised by the treatment of
networks of rhombi. From the perspective of numeri-
cal diagonalizations, these networks involve very large
Hilbert spaces, even for small sizes and moderate val-
ues of EJ/EC. For example, a chain of four rhombi has
12 degrees of freedom which implies diagonalization in
1010−1012 dimensional space for EJ/EC . 8. Therefore,
it is essential to develop approximate but reliable compu-
tation schemes for the low energy spectrum that allow for
a significant reduction in the size of the Hilbert space. A
natural coarse-graining procedure is to try to replace each
rhombus by an effective Z2 junction. As we have seen in
section , this operation preserves the existence of a lo-
cal Z2 symmetry which implies that only pairs of Cooper
pairs can propagate coherently across the network.

Generally, the dynamics of Z2 junction is fully char-
acterized its action S(θ) which is a non-local function of
the phase θ across it. For the slow phase dynamics the
action is separated into kinetic and potential part, for for-
mer can be approximated by quadratic form

1

16Ee f f
C

∫
dtθ̇ 2

where Eeff
C is its effective charging energy. The po-

tential energy part can be characterized by the coef-
ficients En in the expansion of the Josephson energy
V (θ) = ∑En cosnθ . Numerical diagonalization of the
single rhombus shows that all En with n > 2 are very
small in the relevant parameter range EJ/EC . 8 and can

be safely neglected. So, in this approximation the effec-
tive Z2 junction representing the rhombus is character-
ized by three parameters: E1,E2 and Eeff

C . The accuracy
of this approximation will be discussed below. The effec-
tive E1 for an ideal rhombus vanishes exactly at all orders
in EJ/EC. The effective E2 is generated starting from the
fourth order in EJ/EC. At this order, we have:

E2 =
7

64
E4

J

E3
C

(19)

The exact result for E2 as a function of EJ/EC is shown
on Fig. 7.

We now turn to the effective charging energy. At very
small EJ the tunneling of the charge can be neglected and
the effective charging energy is given by electrostatics:
Eeff

C = EC. However, we expect rather large corrections
to this result in the relevant range of 2 . EJ/EC . 8 due
to the charge delocalization which should lead to a de-
crease in the value of Eeff

C . Estimating the effective ca-
pacitance first raises the issue of defining it precisely. In
Eq. (14), this quantity has been computed for a series of
two Z2 junctions, to second order in EJ/EC. This com-
putation has been performed by first assuming a slow
variation (on the scale h̄/EC) of the phase φ across the
two junction chain, and then integrating out the internal
phase degree of freedom. It is only in this limit, and to
the lowest order in perturbation theory, that the effective
action keeps the local φ̇

2 form that allows the straight-
forward definition of a renormalized capacitance. In gen-
eral, we expect the effective action to become non-local
in time, and even non-linear in φ̇ . Furthermore, such a
path integral approach is not as directly numerically im-
plementable as a Hamiltonian formulation. Therefore,
we shall adopt here the following procedure. We con-
sider a series of two identical rhombi, with an additional
capacitance C0 on its rightmost island. This capacitance
is introduced in order to slow down the quantum dynam-
ics of the phase φ on this island, it also mimics the effect
of the remaining part of the array. Then the gap between
the ground-state and the first excited state with an odd
charge on the intermediate island is computed by numer-
ical diagonalization, for various values of EJ/Ec and C0.
This gap is also computed for a series of two Z2 junc-
tions, for which E2 is chosen to be the one previously
computed on Fig. 7 and where Eeff

C is adjusted in order
to match the gaps for the odd intermediate charge sector
of both systems. The values of Ceff (Eeff

C = 2e2/Ceff) as
a function of EJ/EC for C0 = 2,6, and 10 are shown on
Fig. 7. These curves show clearly a tendency for Ceff to
saturate to a value around 3.5C as soon as EJ/EC & 4,
and provided that C0 & 5EC. This stability of Ceff is ex-
pected from physical considerations, because a large C0
turns φ into a slow parameter, and a large EJ/EC reduces
the magnitude of its quantum fluctuations. This suggests
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FIGURE 7. (a) The exact diagonalization result E2 for the second harmonics of a single rhombus as a function of EJ/EC. (b)
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FIGURE 8. (a) The effective stiffness E ′2 of a chain of two rhombi, where the phase φ on the rightmost island is taken as a control
parameter. The plots show the results of the numerical diagonalization (dots) of the two rhombi chain, the results of the mapping
onto a chain of two Z2 junctions whose bare parameters E2 and Eeff

C are determined as explained in the paper, and the recursive
approximation for this chain of two rhombi. (b) The same curves are shown for the chain of three rhombi.
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FIGURE 9. (Color online) The system of twelve rhombi at
the same level of hierarchy as the system of junctions shown in
Fig.6 contains 31 quantum rotors and so is too large for a direct
numerical calculation. The upper (blue) line shows the result
of the recursive approximation described in the text. The lower
(purple) line uses the approximate mapping on the K=3 array
of Z2 junctions. The agreement between these two methods is
very good.

that this way to map a network of rhombi onto the net-
work of Z2 junctions is likely to provide a good estimate
for both the local Z2 gap associated to the energy differ-

ence between states with even and odd particle numbers
on a given node, and the phase stiffness for the charge
4e condensate. As a consistency check of this procedure,
we compare in Fig. 8 the phase stiffness E ′2 for a chain
of a few rhombi, with the same quantity for a chain of Z2
junctions. The results for N = 2 are shown on Fig. 8a, and
those for N = 3 on Fig. 8b. The agreement between the
rhombi chains and the appropriate Z2 chains is very good
throughout the whole range of EJ/EC values considered
here.

Another check is provided by the calculation of the
stiffness for the system of twelve rhombi at the same
level of hierarchy as the system of junctions shown in
Fig.6, using two different approximate methods. The
first one is a recursive approximation starting with the
initial 4e tunneling amplitude of a series of two rhombi
that has just been computed (see Fig. 8), and with an
effective capacitance of half the effective capacitance of
a single rhombus shown on Fig. 7. The second method
uses the mapping onto the K = 3 network of Z2 junctions
represented on Fig. 6a. The results of both calculations
are shown on Fig. 9, and the small difference between
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system of two rhombi chains connected to a central island, computed using the mapping onto a similar array of Z2 junctions. These
data are plotted versus the effective E2/EC2 of these Z2 junctions (a), and versus the nominal EJ of the individual junctions which
compose the rhombi (b). To convert from E2/EC2 to EJ/EC we used the effective Josephson energy of the rhombus shown on Fig. 7
and the effective capacitance shown on Fig. 7. The lowest gap corresponds to one Z2 charge on the central island, i.e. to the label
(1,0,0) defined in text. The second curve corresponds to two types of states, that have one Z2 charge on one site in one of the six
branches, with or without a Z2 charge on the central island. These states, whose energies are very close, are labelled by (0,1,0) and
(1,1,0). Finally, the upper curve is associated to the two nearly degenerate levels with labels (0,1,1) and (1,1,1).

the two curves is another indication that these various
procedures are mutually consistent.

Low energy excitation spectrum

Here we focus on the system with twelve rhombi at the
same level of the K = 3 hierarchy as shown on Fig. 6. We
assume that the total phase difference φ across the sys-
tem is fixed at the value 0 (or π) that minimizes the en-
ergy. In this case, and in the limit of vanishing charging
energy, the phase φ C of the central island can take two
values modulo 2π in any classical ground-state, namely
0 and π . Once φ C is known, for each subchain com-
posed of two rhombi, we have two possible chirality con-
figurations. Therefore, this system exhibits 27 classical
ground-states. In the presence of finite charging energy,
we expect that quantum fluctuations lift the degeneracy
of these classical states, leaving instead one family of
low-lying states whose energies will be computed be-
low. Above these states, that are relatively isolated, we
expect a much more dense spectrum, that results from
the excitation of one or more localized Josephson plas-
mon mode. Our general discussion of the local Z2 sym-
metry shows that a useful way to label the energy eigen-
states is to keep track of the values of the local Z2 charges
on each of the seven islands. Below, we shall consider a
few sectors, with at most three sites carrying a non-zero
value of the Z2 charge (that is an odd number of Cooper
pairs). We shall then use labels of the form (a,b,c), with
a,b,c ∈ {0,1} to refer to such states, where a, b, and c
indicate the Z2 charge on the central island, on one par-
ticular site on its left, and on one particular site on its
right, respectively.

Note that such an array is already too large for a
numerical diagonalization of the corresponding quantum
circuit Hamiltonian to be possible. Therefore, we have
to rely on approximate methods, such as the mapping
onto an array of Z2 junctions, as previously discussed.
Numerical results for the effective phase stiffness and
the energy gaps of various excitations are presented on
Fig. 10

As expected, the lowest gap is obtained while putting
a single Z2 charge on the central island, that has the
smallest charging energy. This gap becomes exponen-
tially small at large EJ/EC, as can be expected from the
semi-classical picture according to which the phase φ C
of the central island tunnels between its two equivalent
classical minima. Note that the energy barrier between
these two classical states increases when the connectiv-
ity K increases. This is in agreement with the result of
Fig. 11, which shows a strong sensitivity of the gap of
the (1,0,0) state on the actual value of K.

By contrast, the energy of the other excited states
shown here is much less sensitive to K, because these
involve Z2 charges on the chain islands. We find that
the energy of two Z2 charges on opposite sides ((0,1,1)
state) is a little less than twice the energy of the single
Z2 charge ((0,1,0) or (0,0,1)). Of course, these states
are degenerate, by a factor K2 for the former and a factor
2K for the later. A more surprising observation is that
adding an extra Z2 charge on the central island, when
one is already present elsewhere, hardly changes the
energy. This can be understood in the small EJ/EC limit
by considering the inverse capacitance matrix for which
the diagonal element C−1

00 on the central island is equal
to twice the off-diagonal elements C−1

0 j . This implies
that the states which carry the classical charges (and not
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Z2 charges here) (0,1,0) and (−1,1,0) have the same
electrostatic energy, equal to (2 + 1/K)EC. Likewise,
states with charges (0,1,−1) and (−1,1,1) have the
same electrostatic energy, 4EC, that is slightly less than
twice the previous one. Notice that while this degeneracy
is a feature of the small EJ/EC limit, it is also expected
in the semi-classical limit of large EJ/EC, because of
the exponentially small tunneling gap between to two
classical states of the central island.

We have also considered another K = 2 system in
which all the four chains connected to the central island
are composed of three rhombi. The numerical results for
the effective phase stiffness and for the lowest energy
gaps are presented on Fig. 12. The comparison with
Fig. 11 shows that this latter system has a smaller phase
stiffness but larger gaps than the former K = 2 array with
chains of only two rhombi.

As we have argued in the Introduction, for experi-
mental implementation of a protected qubit one needs to
maximize both the energy gap (to reduce the effective
noise-induced tunneling amplitude of a single Cooper
pair across the system) and the effective phase stiffness
(to restrict the amplitude of a π shift of the phase on
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FIGURE 13. The effective phase stiffness E ′2 in various ex-
cited states of the K = 3 array of two rhombi chains shown in
Fig. 6. This quantity is directly related to the Φ0/2 periodic
modulation of the critical current of the array imbedded in a
large SQUID loop threaded by a magnetic flux Φ. The sen-
sitivity of the critical current to the quantum state of the array
provides a way to probe experimentally these low energy levels.

the central island). These conflicting requirements sug-
gest that a good working point is obtained for the values
of EJ/EC where the curve for the effective stiffness E ′2



and the curve for the lowest gap cross. The optimal array
is then the one that maximizes the common value of E ′2
and the gap at this working point. Comparing Figs. 10,
11, and 12, we conclude that the most promising ar-
ray seems to be the one with K = 2 composed of three
rhombi chains.

PERSPECTIVES

Experimentally, the variation of the total energy for var-
ious states as a function of the total phase difference φ

across the array can be determined by measuring the crit-
ical current of the system composed of the array in paral-
lel with a large Josephson junction. Motivated by the the-
oretical analysis for rhombi chains [10, 11], the Grenoble
group has shown that, in N = 8 rhombi chains, the criti-
cal current as a function of φ becomes π- periodic when
the flux per rhombus is close to half a flux quantum. [12]
Furthermore, they observed a clear evidence of quantum
phase fluctuations in a sample with EJ/EC = 8, where the
critical current versus phase oscillations are rounded and
reduced in amplitude. A direct experimental evidence for
a finite Z2 charge gap in the finite array corresponding to
the geometry of Fig. 2 has been obtained at Rutgers, for
a several samples with the ratio EJ/Ec ranging from 2 to
5.

The next important step would be to measure the en-
ergy spectrum of low lying excitations. This can still be
done in principle by critical current measurements, be-
cause, as shown on Fig. 13, the global phase stiffness is
sensitive to the actual quantum state of the whole array.
The selective excitation of the system can be achieved by
sending microwave pulses on an electrode that is capaci-
tively coupled to the central island.

Finally, the goal is to operate such an array as a pro-
tected qubit. For the array shown on Fig. 2, the logi-
cal qubit can be encoded in the two possible values of
the central island phase. A better protection would be
obtained by combining two such arrays in series, using
again the central island phase for encoding. As shown by
Kitaev, such a system allows for a universal set of robust
quantum gates. [13] We hope that the research reported
here will facilitate further efforts to implement this very
promising class of systems.
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