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Abstract. A theory of the fluctuation-induced Nernst effect is developed for a two-dimensional superconductor in a
perpendicular magnetic field. First, we derive a simple phenomenological formula for the Nernst coefficient, which naturally
explains the giant Nernst signal due to fluctuating Cooper pairs. The latter signal is shown to be large even far from the
transition and may exceed by orders of magnitude the Fermi liquid terms. We also present a complete microscopic calculation
of the Nernst coefficient for arbitrary magnetic fields and temperatures, which is based on the standard definition of heat
current vertices. It is shown that the magnitude and the behavior of the Nernst signal observed experimentally in disordered
superconducting films can be well understood on the basis of superconducting fluctuation theory.
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INTRODUCTION

A series of recent experimental studies have revealed an
anomalously strong thermomagnetic signal in the nor-
mal state of the high-temperature superconductors [1,
2, 3, 4, 5, 6, 8, 7] and disordered superconducting
films [9, 10]. In the pioneering experiment [1], Xu et al.
observed a sizeable Nernst effect in the La2−xSrxCuO4
compounds up to 130 K, well above the transition tem-
perature, Tc. This and further similar experiments on
the cuprates have sparked theoretical interest in the
thermomagnetic phenomena. Theoretical approaches to
the anomalously large Nernst-Ettingshausen effect cur-
rently include models based on the proximity to a quan-
tum critical point [11], vortex motion in the pseudogap
phase [2, 13, 12], as well as a superconducting fluctu-
ation scenario [16, 14, 15]. While the two former theo-
ries are specific to the cuprate superconductors, the latter
scenario should apply to other more conventional super-
conducting systems as well. Very recently, a large Nernst
coefficient was observed in the normal state of disordered
superconducting films [9, 10]. These superconducting
films are likely to be well-described by the usual BCS
model and, hence, the new experimental measurements
provide an indication that the superconducting fluctua-
tions are likely to be the key to understanding the under-
lying physics of the giant thermomagnetic response.

Various groups have previously calculated the
fluctuation-induced Nernst coefficient in the vicinity
of the classical transition [18, 17, 16, 14, 15]. However,

these analyses were limited to the case of very weak
magnetic fields and temperatures close to the zero-field
transition, when Landau quantization of the fluctuating
Cooper pair motion can be neglected. In experiment,
however, other parts of the phase diagram (in particular
strong fields) are obviously important and how the
quantized motion of fluctuating pairs would figure into
the thermomagnetic response has remained unclear.
Here we clarify this physics, explaining the origin of
the giant fluctuation Nernst-Ettingshausen effect, and
develop a complete microscopic theory of Gaussian
superconducting fluctuations at arbitrary magnetic fields
and temperatures above the mean-field transition line
[19].

QUALITATIVE DISCUSSION

We start with a qualitative discussion of the Nernst effect.
Consider a conductor in the presence of a magnetic field,
Hz, and electric field, Ey, directed along the z- and y-axes
respectively. The charged carriers (of charge q) subject to
these crossed fields acquire a drift velocity vx = cEy/Hz
in the x-direction. The latter would result in the ap-
pearance of a transverse drift current j(d)

x = nqvx. When
the circuit along x-axis is broken, no current flows, and
the drift of carriers is prevented by the spacial variation
of the electric potential: ∇xϕ = −Ex = (nqc/σ)(Ey/Hz),
where σ is the conductivity. Due to electroneutrality,
this generates the spacial gradient of the chemical po-



tential: ∇xµ(n,T ) + q∇xϕ = 0, which corresponds to the
appearance of the transverse temperature gradient ∇xT =

∇xµ(dµ/dT )−1 along the x-direction. Hence, the Nernst
coefficient can be expressed in terms of the temperature
derivative of the chemical potential:

νN ≡
Ey

(−∇xT )Hz
∼ σ

nq2c
dµ
dT

. (1)

To verify Eq. (1), consider, for example, a degenerate
electron gas (q = −|e|). In this case, the conductivity is
given by the Drude formula, σ = ne2τ/m, and the chemi-
cal potential µ(T ) = µ0− (π2T 2/6)(d lnν/dµ), where ν(µ)
is the density of states. Therefore one easily reproduces
the value of the Nernst coefficient in a 3D normal metal:
νN = π2Tτ/(6mcEF) [21, 20], where τ is the elastic scat-
tering time (here and below h̄ = kB = 1). Thus the Nernst
effect in metals is small due to the large value of the
Fermi energy EF .

We note that the regime of applicability of the qualita-
tive Eq. (1) is expected to coincide with that of the quasi-
classical Drude formula. Equation (1) should be relevant
to the description of classical Aslamazov-Larkin fluctua-
tions and provide a correct order-of-magnitude estimate
of the effect. As shown below, Eq. (1) does in fact remain
quantitatively valid in a very wide quasiclassical parame-
ter regime. We note however that one should be careful in
applying Eq. (1) to quantitatively describe other systems,
especially those where quantum transport dominates.

The simple form of Eq. (1) suggests that in order to
get a large Nernst signal, a strong temperature depen-
dence of the chemical potential of carriers is required.
This simple and intuitive result alone may shed light on
the physics behind the strong Nernst signal often seen in
various superconductors. Indeed, a strong temperature-
dependence of the chemical potential can be achieved
in the vicinity of the transition where the fluctuating
Cooper pairs appear side by side with the normal elec-
trons. These excitations are unstable, have the charac-
teristic lifetime of order τGL = π/8(T − Tc), and form
an interacting Bose gas with a variable number of parti-
cles. In two dimensions, their concentration is n(2)

c.p.(T ) =

(mTc/π) ln[Tc/(T −Tc)] [22].
Near transition, the chemical potential of the fluctu-

ating pairs can be found by identifying its value in the
Bose distribution to give n(2)

c.p.(T ) above. This leads to
µ(2)

c.p.(T ) = Tc − T . Since dµ(2)
c.p./dT = −1, the fluctuation

contribution to the Nernst signal exceeds parametrically
the Fermi liquid term. In this sense it is similar to the
fluctuation diamagnetism (which also exceeds the Lan-
dau/Pauli terms and is effectively a correction to the per-
fect diamagnetism of a superconductor).

Based on the qualitative Eq. (1) and using the known
expression for paraconductivity in a magnetic field, σfl =

(e2/2ε)F(ε/2h̃) [22], one can estimate the value of the

Nernst coefficient due to fluctuating Cooper pairs in the
Ginzburg-Landau (GL) region:

ν(2)
N (T,H) ∼ 1

mc
F(x)

T −Tc
∼


[mc(T −Tc)]−1, x� 1,
(meDH)−1, x� 1,

(2)

F(x) = x2 [
ψ (1/2 + x)−ψ (x)−1/(2x)

]
, (3)

where x = ε/2h̃, ε = ln(T/Tc) and h̃ = H/H̃c2(0) are
the reduced temperature and magnetic field, H̃c2(0) =

4cTc/πeD is the linearly extrapolated value of the up-
per critical field, and D is the diffusion coefficient. The
estimate (2) corresponds to the results in the GL re-
gion [16, 18]. We will see below that Eq. (2) indeed pro-
vides an order-of-magnitude estimate of the Nernst effect
close to the classical transition point, thus giving an ad-
ditional justification of qualitative arguments leading to
Eq. (1).

MICROSCOPIC CALCULATION

General framework

We now proceed with the microscopic calculation of
the Nernst coefficient,

νN(T,H) = R�βxy/H, (4)

where R� = 1/σxx, and βαβ is the thermoelectric tensor
relating the transport heat current jQ

tr to the applied elec-
tric field E in the absence of a temperature gradient:

jQα
tr = TβαβEβ. (5)

In Eq. (4) we neglect the contribution of the diagonal
component, βxx, since it is small in the parameter T/EF
even in the presence of fluctuations [22]. Thus our aim
will be to find the fluctuation contribution to the off-
diagonal component, βxy.

First we recall a deep relation between thermo-
magnetic effects and magnetization as emphasized by
Obraztsov [23] already in 1965 (later on his arguments
have been widely used in Refs. [24, 25, 16]): In the pres-
ence of a magnetic field, the measurable transport heat
current jQ

tr differs from the microscopic heat current jQ

by the circular magnetization current jQ
M = cM×E, where

M is the induced magnetization. As a result, the thermo-
electric tensor βαβ in Eq. (5) can be found as a sum of the
kinetic, β̃αβ, and thermodynamic, βαβM , contributions:

βαβ = β̃αβ +β
αβ
M , β

αβ
M = εαβγcMγ/T. (6)

To calculate the kinetic term, β̃αβ, we employ the
Matsubara-Kubo approach and express it via the thermal



FIGURE 1. The Aslamazov-Larkin (AL) and density-of-
states (DOS) diagrams for the thermoelectric response β̃xy.
The DOS diagram has a symmetric counterpart. The white and
black circles correspond to the different heat and electric ver-
tices, the shadowed blocks represent cooperons, and the wavy
lines denote the fluctuation propagator (see text). All objects on
these graphs are generally matrices in the Landau basis.

and quantum mechanical averaging of the electric-heat
currents correlator Qαβ(ων) =

〈
jeα(−ων) jQβ(ων)

〉
. Then

β̃αβ can be found by analytic continuation from bosonic
Matsubara frequencies, ων = 2πTν, to real frequencies:

β̃αβ =
1
T

lim
ω→0

Im
Qαβ(−iω+ 0)

ω
. (7)

The thermodynamic term β
αβ
M accounts for the magneti-

zation heat current jQ
M [23]. It is expressed in terms of

the fluctuation magnetization, M(T,H), which has been
calculated previously in the GL region [27, 26, 22] and
at low temperatures, close to Hc2(0) [28].

Our goal now is to evaluate the linear response opera-
tor Qxy(ων) and analytically continue it to real frequen-
cies. We follow Ref. [28] and perform calculations in the
Landau basis, without expanding the Green functions,
propagators, current and heat vertices in the magnetic
field. This guarantees that gauge invariance is preserved
and allows to access the high-field regime. The fluctu-
ation part of the correlator Qxy(ων) is generally repre-
sented by ten diagrams [28, 22]. However, in the case of
the Nernst effect, the Maki-Thompson contribution can
be shown to be exactly zero and some of the DOS dia-
grams turn out to be less singular: The graphs contain-
ing three cooperons (see Fig. 1) are dominant. The posi-
tive Aslamazov-Larkin (AL) term dominates in the clas-
sical Ginzburg-Landau (GL) region and competes with
the negative density-of-states (DOS) contribution every-
where else. These AL and DOS contributions, and the
fluctuation magnetization are given by [29]

Qxy
AL(ων) = −4νHT

∑

Ωk

∑

n,m

q̂x
mnB(e)

nmLn(Ωk)q̂ynmB(Q)
nm Lm(Ωk+ν),

(8)

2Qxy
DOS(ων) = 4νHT

∑

Ωk

∑

n,m

q̂x
mnΣ

(e,Q)
nm q̂ynmLn(Ωk), (9)

Mz = − ∂

∂H
νHT

∑

Ωk

∑

n

ln L−1
n (Ωk). (10)

Here Ln(Ωk) = −ν−1 [
ln(T/Tc) +ψn(|Ωk |)−ψ(1/2)

]−1 is
the fluctuation propagator, ψn(Ω) is a short-hand notation

je

εl+ν

εl

−ev jQ

εl+ν

εl

i(εl + εl+ν)v/2

FIGURE 2. Electric-current (left) and heat-current (right)
vertices (εl and εl+ν are the fermionic Matsubara energies).

for ψ[1/2 + (Ω+αn)/4πT ], with αn = (4eDH/c)(n + 1/2)
being the Landau spectrum, νH = eH/πc, and the matrix
elements of the momentum operator in the Landau basis
are given by q̂x,y

mn =
√

eH/c
(

i
1

)(√
mδm,n+1∓

√
nδn,m+1

)
.

Electric and heat current blocks

We now calculate exactly the three-Green-function
blocks, B(e)

nm(Ωk,ων) and B(Q)
nm (Ωk,ων), with two cooper-

ons and electric or heat vertices shown in Fig. 2. We note
here that there exists a long-standing controversy of the
proper definition of a heat current and, more generally,
the applicability of Kubo-type linear response theory for
thermal transport. In our microscopic calculations, we do
assume that the latter holds and use the standard defini-
tion of the heat current vertex, i(εl +εl+ν)v/2 [22], which
is known to reproduce all known results, e.g., in a Fermi
gas and interacting Fermi liquids. We also evaluate the
six-Green-function block with three cooperons and elec-
tric and heat vertices, Σ

(e,Q)
nm (Ωk,ων) and find (ων ≥ 0):

B(e)
nm(Ωk,ων) = eνD

[
ψm(ων + |Ωk |)−ψn(|Ωk |)

ων +αm−αn

+
ψn(ων + |Ωk+ν|)−ψm(|Ωk+ν|)

ων−αm +αn

]
, (11)

B(Q)
nm (Ωk,ων) =

−iνD
2

×
[
(Ωk −αm)ψm(|Ωk |+ων)− (Ωk+ν−αn)ψn(|Ωk |)

ων +αm−αn

+
(Ωk+ν +αn)ψn(|Ωk+ν|+ων)− (Ωk +αm)ψm(|Ωk+ν|)

ων +αn−αm

]
,

(12)

Σ
(e,Q)
nm (Ωk,ων) = −ieνD2

[
Ωk+ν−αn

ων +αm−αn
ψ′n(|Ωk |)

− Ωk+ν +αn

ων−αm +αn
ψ′n(|Ωk+ν|+ων)

− Ωk −αm

(ων +αm−αn)2 (ψm(|Ωk |+ων)−ψn(|Ωk |))

+
Ωk +αm

(ων−αm +αn)2 (ψn(|Ωk+ν|+ων)−ψm(|Ωk+ν|))
]
.

(13)



Results in various asymptotic regions

The general calculation of Eqs. (8)–(10) is straight-
forward but cumbersome. However, one can identify
nine qualitatively different regions of the phase diagram
(Fig. 3), where the asymptotic behavior has a simple ana-
lytical form. Before proceeding to the corresponding de-
tails, we emphasize that the result for the Nernst coeffi-
cient is universal in the sense that the function βxy(T,H)
depends only on T/Tc and H/Hc2(0), but not the elastic
scattering time τ (unlike conductivity). This universality
is due to the magnetization contribution, βxy

M , which reg-
ularizes the otherwise divergent (and thus τ-dependent)
terms in β̃xy. These seemingly accidental cancellations
between the two physically distinct terms appear in a
wide parameter range and are unlikely to be a coinci-
dence (e.g., they may not occur if a different definition
of heat vertices is used). Therefore, these remarkable
cancellations provide a strong evidence that the standard
definition of the heat vertices is indeed appropriate to de-
scribe the effect.

Ginzburg-Landau region

We start by discussing the classical regime close to the
critical temperature Tc: The regions I, II, III in Fig. 3 are
characterized by ε = ln(T/Tc)� 1 and h̃ = H/H̃c2(0)� 1.
In these domains, only the classical AL contribution is
important and is given by [cf. Eq. (2)]: β̃xy = 2β0F(x)/x,
where x = ε/2h̃, β0 = kBe/πh̄ = 6.68 nA/K is the quantum
of thermoelectric conductance, and the function F(x) is
given by Eq. (3). The magnetization contribution to the
observable βxy [see Eq. (6)] is given by

β
xy
M = β0

[
ln

Γ(1/2 + x)√
2π

− xψ(1/2 + x) + x
]
. (14)
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FIGURE 3. Different asymptotic regions for the fluctuation
Nernst effect on the (H,T ) phase diagram. Landau quantization
of the Cooper pair motion is important in the regions II–VII
and IX.

In the limit of vanishingly small magnetic fields h̃� ε
(region I), we find β̃xy = β0(h̃/2ε), which is two times
larger than the result of Refs. [16, 14, 22] where the
same microscopic Matsubara-Kubo approach has been
used. The additional factor is due to the complicated an-
alytic structure of the heat-current block (12) overlooked
in the previous diagrammatic calculations [16, 14, 22],
but properly accounted for in Ref. [17]. Note that our di-
agrammatic calculation also differs from by a factor-of-
two from the result of the phenomenological Ginzburg-
Landau approach [22]. This difference may be related
to a more fundamental issue (as compared to a calcu-
lational mistake) and may signal, e.g. a problem with
the definition of the heat currents within time-dependent
Ginzburg-Landau (TDGL) theory or/and diagrammatics.
The exact origin of the factor-of-two discrepancy re-
mains unclear at this stage.

Thus in the region I, the magnetization contribution
β

xy
M = −β0(h̃/6ε) cancels only 1/3 of β̃xy, and the fi-

nal result appears to be four times larger than that of
Refs. [16, 14, 22]:

β
xy
I = β0

h̃
3ε

= β0
πeDH

12c(T −Tc)
, h̃� ε � 1. (15)

In the limit ε � h̃ (region II), and close to the transition
line, at h̃ + ε � h̃ (region III), we find

β
xy
II = β0 [1− (ln2)/2] , ε � h̃� 1; (16)

β
xy
III = β0

h̃
ε + h̃

= β0
Hc2 (T )

H−Hc2 (T )
, ε + h̃� h̃� 1.

(17)

Low-temperature region

Now we turn to the low-temperature regime close to
the upper critical field Hc2(0) = πcTc/2γeD (regions IV,
V, VI in Fig. 3), where γ = 1.78 . . . is the exponential
of the Euler constant. Here role of magnetization term
becomes crucial: The 1/T divergence of βxy

M = Mz/T ex-
actly cancels the divergent contribution originating from
β̃xy, which is necessary to satisfy the third law of thermo-
dynamics. As a result, the total coefficient βxy

IV remains fi-
nite in the limit or zero temperature. The exact analytical
expression at t = T/Tc� 1 and η= (H−Hc2(t))/Hc2(t)�
1 is quite lengthy. We present below only the asymptotic
expressions in the regions IV, V, VI.

In the purely quantum limit of vanishing temperature
and away from Hc2(0) (t� η, region IV), βxy is negative:

β
xy
IV = −2β0γt

9η
= − β0πcT

9eD[H−Hc2(0)]
, t� η� 1.

(18)
This change of sign in thermoelectric response is similar
to negative magnetoresistance in the quantum fluctuation



transport for the usual electrical conductivity found in
Ref. [28] in the vicinity of Hc2(0). The sign change is
due to the DOS contribution being numerically larger
than the positive AL term. In the quantum-to-classical
crossover region, where H tends to Hc2(t) but remains
limited as t2/ ln(1/t)� η� t (region V), the coefficient
βxy is positive:

β
xy
V = β0 ln(t/η), t2/ ln(1/t)� η� t� 1. (19)

Near Hc2(t) (η� t2/ ln(1/t), region VI), we find:

β
xy
VI = 8β0γ

2t2/3η, η� t2/ ln(1/t)� 1. (20)

Above the transition line

We also address the full classical region just above the
transition line, which covers a wide range of tempera-
tures and magnetic fields (η� 1, region VII). In this re-
gion, β̃xy is generally comparable to βxy

M = −β0/η, and we
obtain

β
xy
VII =

β0

η

[
1 +

h
4γt

ψ′′(1/2 + h/4γt)
ψ′(1/2 + h/4γt)

]
, η→ 0, (21)

with h = H/Hc2(0). Close to Tc, Eq. (21) matches
Eq. (17), while in the limit T → 0 it matches Eq. (20)
provided that η � t2/ ln(1/t). We note that in deriving
Eq. (21), the Landau quantization of the Cooper pair mo-
tion was crucial.

Far from the transition line

Finally, we address the “non-singular” regions VIII
and IX far from the transition line. In this limit,
the Kubo contribution β̃xy diverges as [ln ln(1/Tcτ) −
ln lnmax(h, t)], with 1/τ playing the role of the ultra-
violet cutoff of the cooperon modes. Remarkably, the
same divergence of the opposite sign occurs in the mag-
netization contribution β

xy
M . Hence, the total expression

for βxy remains finite:

β
xy
VIII = β0

eDH
6πcT ln(T/Tc)

, (1,h)� t; (22)

β
xy
IX = β0

πcT
12eDH ln[H/Hc2(0)]

, (1, t)� h. (23)

We see that even far from the transition the fluctuation
Nernst coefficient can be comparable or parametrically
larger than the Fermi liquid terms. In fact, it is conceiv-
able that in some materials the Cooper channel contri-
bution to thermal transport at low temperatures can be
dominant even in the absence of any superconducting
transition at all (e.g., if superconductivity is “hidden” by
another order).
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FIGURE 4. Comparison with experiment. Circles: experi-
mental data for limH→0 β

xy/H vs. ε = lnT/Tc obtained for the
12.5-nm-thick Nb0.15Si0.85 film [9]. Dashed line: theoretical
prediction for the strictly 2D geometry. Solid line: theoretical
prediction for the real sample [9] with the 2D-3D crossover
taken into account.

Comparison with experiment

Plotted in Fig. 4 is a comparison between our theory
and the experimentally measured Nernst coefficient [9]
for a Nb0.15Si0.85 film of thickness d = 12.5 nm. The
dashed line corresponds to the coefficient limH→0 β

xy/H
in a wide range of temperatures up to 30Tc. We used the
diffusion coefficient D = 0.087 cm2/s which is 60% of
that reported in Ref. [9] (with kF l ∼ 1, the precise de-
termination of D is questionable). Note that far from the
transition point (ε > 2), the superconducting coherence
length ξ(T ) becomes shorter than d and 3D nature of dif-
fusion manifests itself. It can be described by substituting
αn → αn + D(πp/d)2 and performing an additional sum-
mation over p = 0,1, . . . in Eqs. (8)–(10). The resulting
curve is shown in Fig. 4 by the solid line.

CONCLUSION

In summary, we have developed a complete micro-
scopic theory of the fluctuation Nernst effect in a two-
dimensional superconductor. Our results provide a natu-
ral explanation for a large Nernst signal observed in su-
perconducting films [9, 10] and probably should be rele-
vant to the cuprates. Another interesting theoretical pre-
dictions is a slow decay of the transverse thermoelectric
response away from the transition line, which is expected
to persist well into the metallic phase.

Finally, we remark on a recent alternative approach
[30] to precisely the same problem, where the Keldysh
nonequilibrium technique has been used. Technical de-
tails of the calculation [30] are not available but their
findings look pretty similar to our results: They identify
exactly the same asymptotic regions on the (H,T ) dia-
gram, with the asymptotic expressions coinciding with



our Eqs. (15)–(23) up to some numerical factors of or-
der one. In full analogy with our treatment, in Ref. [30]
the magnetization term β

xy
M was also crucial to regularize

the otherwise divergent term β̃xy in the regions IV, VII,
IX. Contrary to our approach, Ref. [30] reproduces the
TDGL result in the AL region I, thus making a critical
reexamination of various approaches to the heat trans-
port highly demanding.
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