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Abstract. Theoretical approaches to the problem of the high energy hadron-hadron scattering in the Regge kinematics are
reviewed. It is shown, that the gluon in QCD is reggeized and the Pomeron is a two gluon composite state. Further, the equation
for the multi-gluon composite states is integrable at Nc → ∞. Due to the AdS/CFT correspondence in N = 4 SUSY the BFKL
Pomeron is equivalent to the reggeized graviton. The important properties of the maximal transcendentality and integrability
are realized in this model. Multi-gluon scattering amplitudes are investigated in the Regge limit. The BDS ansatz for them is
not valid beyond one loop due to the presence of the Mandelstam cuts. The hamiltonian for the corresonding reggeon states
coincides with the hamiltonian of an integrable open Heisenberg spin chain.
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REGGE APPROACH TO HIGH ENERGY
INTERACTIONS

Hadron-hadron scattering in the Regge kinematics

s = (pA + pB)2 = (2E)2 >>~q2 =−(pA′ − pA)2 ∼ m2

(1)
is usually described in terms of a t-channel exchange of
the Reggeon

Ap(s, t) = ξp(t)g(t)s jp(t) g(t) , jp(t)

= j0 +α ′t , ξp(t) =
e−iπ jp(t) + p

sin(π jp)
, (2)

where jp(t) is the Regge trajectory which is assumed to
be linear, j0 and α ′ are its itercept and slope, respectively.
The signature factor ξp is a complex quantity depend-
ing on the Reggeon signature p = ±1. Around 40 years
ago V.N. Gribov constructed the phenomenological field
theory for all possible Reggeon interactions. A special
Reggeon - Pomeron with the vacuum quantum numbers
and positive signature was introduced to explain an ap-
proximately constant behavior of total cross-sections at
high energies and a fullfillment of the Pomeranchuck the-
orem σhh̄/σhh → 1.

In the Born approximation of QCD the elastic ampli-
tude for two colored particle scattering is factorized

MA′B′
AB (s, t)|Born = Γc

A′A
2s
t

Γc
B′B , Γc

A′A

= gT c
A′A δλA′λA , (3)

where T c are the generators of the color group SU(Nc)
in the corresponding representation and λr are helicities
of the colliding and final state particles. In the leading

logarithmic approximation (LLA) this amplitude has the
Regge form [1]

MA′B′
AB (s, t) = MA′B′

AB (s, t)|Born sω(t), αs lns∼ 1 , (4)

where the gluon Regge trajectory with the use of the
dimensional regularization can be written as follows

ω(−|q|2) =− αsNc

(2π)2−2ε |q2|
∫ µ2ε d2−2ε k
|k|2|q− k|2

≈−a
(

ln
|q2|
µ2 −

1
ε

)
, a =

αs Nc

2π
(
4π e−γ)ε (5)

and γ is the Euler constant γ = −ψ(1). This Regge
trajectory was calculated also in two-loop approximation
in QCD [2] and in supersymmetric gauge theories [3].

Further, the scattering amplitude in the multi-Regge
kinematics for produced gluons with momenta kr

sÀ s1 , s2 , ... , sn+1 À t1 , t2 , ... , tn+1 ;
sr = (kr−1 + kr)2 , tr =−|qr|2 (6)

has the form [1]

M2→1+n = 2sΓc1
A′A

sω(−|q1|2)
1
|q1|2 gT d1

c2c1
C(q2,q1)

× sω(−|q2|2)
2
|q2|2 ...C(qn,qn−1)

sω(−|qn|2)
n

|qn|2 Γcn
B′B . (7)

Here C are the Reggeon-Reggeon-gluon vertices

C(q2,q1) =
q2 q∗1

q∗2−q∗1
(8)

and we used the complex notations k = kx + iky for the
transverse components of momenta.



BFKL EQUATION

Because the production amplitudes in QCD are factor-
ized, one can write a Bethe-Salpeter-type equation for
the total cross-section σt . It is governed by the Pomeron
exchange. The Pomeron wave function satisfies the equa-
tion of Balitsky, Fadin, Kuraev and Lipatov (BFKL) [1]

E Ψ(~ρ1,~ρ2) = H12 Ψ(~ρ1,~ρ2) , ∆ =−αsNc

2π
E , (9)

where σt ∼ s∆max . The BFKL Hamiltonian in the coordi-
nate representation ρ is

H12 = ln |p1 p2|2 +
1

p1 p∗2
(ln |ρ12|2)p1 p∗2

+
1

p∗1 p2
(ln |ρ12|2)p∗1 p2−4ψ(1) , (10)

where ρ12 = ρ1 − ρ2. It is invariant under the Möbius
transformations [4, 5]

ρk → aρk +b
cρk +d

(11)

and has the property of the holomorphic separability

H12 = h12 +h∗12 , h12 = ln(p1 p2)+
1
p1

ln(ρ12) p1

+
1
p2

ln(ρ12) p2−2ψ(1) . (12)

Here we used the complex notations ρr = xr + iyr, pr =
i∂r for two-dimensional transverse coordinates and their
canonically conjugated momenta. For the principal se-
ries of unitary representations of the Möbius group the
conformal weights are

m = γ +n/2 , m̃ = γ−n/2 , γ = 1/2+ iν , (13)

where γ is the anomalous dimension of the twist-2 oper-
ators and n = 0,±1,±2, ... is the conformal spin.

The Bartels-Kwiecinski-Praszalowicz (BKP) equation
for colorless composite states of several reggeized gluons
has the form [6]

E Ψ(~ρ1, ...~ρn) = H Ψ(~ρ1, ...~ρn) , H

= ∑
k<l

~Tk~Tl

−Nc
Hkl , (14)

where Hkl is the BFKL hamiltonian. Apart from the
Möbius invariance its wave function in the multi-color
QCD (Nc → ∞) has the property of the holomorphic
factorization [7]

Ψ(~ρ1, ...,~ρn) = ∑
r,s

ar,s Ψr(ρ1, ...,ρn)Ψs(ρ∗1 , ...,ρ∗n ) ,

(15)
where the sum is performed over a degenerate set of
solutions for the corresponding holomorphic and anti-
holomorphic equations. The BKP equation has also the
duality symmetry [8]

pk → ρk,k+1 → pk+1 (16)

and n integrals of motion qr, q∗r [9]. The corresponding
hamiltonians h and h∗ are local hamiltonians of the in-
tegrable Heisenberg spin model, in which spins are gen-
erators of the Möbiuos group [10]. We can introduce the
transfer (T ) and monodromy (t) matrices according to
the definitions [9]

T (u) = Trt(u) =
n

∑
r=0

un−r qr , t(u) = L1(u)L2(u)...Ln(u) ,

(17)

Lk(u) =
(

u+ρk pk pk
−ρ2

k pk u−ρk pk

)
,

t(u) =
(

A(u) B(u)
C(u) D(u)

)
. (18)

The matrix elements of t(u) satisfy some bilinear com-
mutation relations following from the Yang-Baxter equa-
tion [9]

ts1
r′1

(u) ts2
r′2

(v) l̂r′1r′2
r1r2 (v−u)

= l̂s1s2
s′1s′2

(v−u) ts′2
r2 (v) ts′1

r1 (u) ,

l̂(u) = u 1̂+ i P̂ , (19)

where l̂(u) is the monodromy matrix for the usual
Heisenberg spin model and P̂ is the permutation opera-
tor. This equation can be solved with the use of the Bethe
ansatz and the Baxter-Sklyanin approach [11, 12].

POMERON IN N = 4 SUSY

One can calculate the integral kernel for the BFKL equa-
tion also in two loops [13]. Its eigenvalue can be written
as follows

ω = 4 â χ(n,γ)+4 â2 ∆(n,γ) , â = g2Nc/(16π2) , (20)

where

χ(n,γ) = 2Ψ(1)−Ψ(γ + |n|/2)−Ψ(1− γ + |n|/2) ,
Ψ(x) = Γ′(x)/Γ(x) . (21)



The one-loop correction ∆(n,γ) in QCD contains the
non-analytic terms - the Kroniker symbols δ|n|,0 and
δ|n|,2, but in N = 4 SUSY they are cancelled and we
obtain for ∆(n,γ) the following result [3, 14]

∆(n,γ) = φ(M)+φ(M∗)− ρ(M)+ρ(M∗)
2â/ω

,

M = γ +
|n|
2

, (22)

ρ(M) = β ′(M)+
1
2

ζ (2) , β ′(z)

=
1
4

[
Ψ′

( z+1
2

)
−Ψ′

( z
2

)]
. (23)

It is interesting, that all functions entering in these ex-
pressions have the property of the maximal transcenden-
tality [14]. In particular, φ(M) can be written in the form

φ(M)= 3ζ (3)+Ψ
′′
(M)−2Φ(M)+2β

′
(M)

(
Ψ(1)−Ψ(M)

)
,

(24)

Φ(M) =
∞

∑
k=0

(−1)k

k +M

(
Ψ′(k +1) − Ψ(k +1)−Ψ(1)

k +M

)
.

(25)
Here Ψ(M) has the transcedentality equal to 1, its dif-
ferentiation Ψ(n) increases it to n + 1, the special num-
ber ζ (3) has the transcendality 3, the additional poles in
the sum over k add the transcedentality of the function
Φ(M) up to 3. The maximal transcendentality hypothe-
sis is valid also for the anomalous dimensions of twist-2
-operators in N = 4 SUSY [15, 16] contrary to the case
of QCD [17].

The eigenvalue of the BFKL kernel in the diffusion
approximation is written below [1]

j = 2−∆−Dν2 , (26)

where ν is related to the anomalous dimension γ of the
twist-2 operators as follows [13]

γ = 1+
j−2

2
+ iν . (27)

The parameters ∆ and D are functions of the coupling
constant â and are known up to two loops. Higher order
perturbative corrections can be obtained with the use of
the effective action [18, 19]. For large coupling constants
one can expect, that the leading Pomeron singularity in
N = 4 SUSY is moved to the point j = 2 and asymp-
totically the Pomeron coincides with the graviton Regge
pole. This assumption is related to the AdS/CFT corre-
spondence, formulated in the framework of the Malda-
cena hypothesis claiming, that N = 4 SUSY is equivalent
to the superstring model living on the 10-dimensional

anti-de-Sitter space [20, 21, 22]. Therefore it is natu-
ral to impose on the BFKL equation in the diffusion
approximation the physical condition, that for the con-
served energy-momentum tensor θµν(x) having j = 2 the
anomalous dimension γ is zero. As a result, we obtain,
that the parameters ∆ and D coincide [16] and

γ = ( j−2)

(
1
2
− 1/∆

1+
√

1+( j−2)/∆

)
. (28)

Using the dictionary developed in the framework of
the AdS/CFT correspondence [21], one can rewrite the
eigenvalue relation for the BFKL kernel in the form of
the graviton Regge trajectory [16]

j = 2+
α ′

2
t , t = E2/R2 , α ′ =

R2

2
∆ . (29)

On the other hand, Gubser, Klebanov and Polyakov pre-
dicted the following asymptotics of the anomalous di-
mension at large â and j [23]

γ|â, j→∞ =−
√

2π j â1/4 . (30)

As a result, one can obtain the explicit expression for the
Pomeron intercept at large coupling constants [16, 24]

j = 2−∆ , ∆ =
1

2π
â−1/2 . (31)

In Ref. [25] it was argued, that for N = 4 SUSY the
evolution equations for anomalous dimensions of quasi-
partonic operators are integrable in LLA. Later such
integrability was generalized to other operators [26] and
to higher loops [27]. Using additionally the maximal
transcendentality hypothesis the integral equation for the
so-called casp anomalous dimension was constructed in
all orders of perturbation theory [28, 29]. Further, the
anomalous dimension of twist-2 operators in four loops
was calculated [30], but due to the absence of the so-
called wrapping contributions in the asymptotic Bethe
anzatz the obtained results do not agree with the BFKL
predictions [3, 14].

BERN-DIXON-SMIRNOV SCATTERING
AMPLITUDES IN N = 4 SUSY

To calculate higher order corrections to the BFKL equa-
tion in QCD and supersymmetric models one should
know production amplitudes in higher orders of perturba-
tion theory. Several years ago Bern, Dixon and Smirnov
suggested a simple anzatz for the multi-gluon scattering
amplitude with the maximal helicity violation in the pla-
nar limit αNc ∼ 1 for the N = 4 super-symmetric gauge



theory [31]. It turns out, that this amplitude is propor-
tional to its Born expression. The proportionality coeffi-
cient Mn for n external particles is a function of relativis-
tic invariants and can be expressed at ε = (4−D)/2→ 0
in terms of an infraredly divergent factor and an expres-
sion depending on three functions γ(a),β (a) and δ (a),
which are known up to a rather large order of pertur-
bation theory. In particular, γ(a) is the so-called cusp
anomalous dimension which was calculated in all or-
ders [28, 29]

In Ref. [32] the BDS anzatz was investigated in the
Regge kinematics (see also Ref. [33]). In particular, the
elastic amplitude has the Regge asymptotics

M2→2 = Γ(t)
(−s

µ2

)ω(t)

Γ(t) (1+O(ε)) , (32)

where µ2 is the renormalization point. The quantity

ω(t) =−γ(a)
4

ln
−t
µ2 +

∫ a

0

da′

a′

(
γ(a′)

4ε
+β (a′)

)

=
(
− ln

−t
µ2 +

1
ε

)
a+

[
ζ2

(
ln
−t
µ2 −

1
2ε

)
− ζ3

2

]
a2 + ...

(33)
is the all-order gluon Regge trajectory obtained from the
BDS formula [32] and

lnΓ(t) = ln
−t
µ2

∫ a

0

da′

a′

(
γ(a′)

8ε
+

β (a′)
2

)

+
C(a)

2
+

γ(a)
2

ζ2−
∫ a

0

da′

a′
ln

a
a′

(
γ(a′)
4ε2

+
β (a′)

ε
+δ (a′)

)
, (34)

is the vertex for the Reggeized gluon coupling to the
external particles. Note that the perturbative expansion
for ω(t) is in an agreement with its direct calculations
performed initially in the MS-scheme [3].

One can verify that in all physical regions the BDS
amplitude for one gluon production in the multi-Regge
kinematics can be obtained with the use of an analytic
continuation from the expression [32]

M2→3

Γ(t1)Γ(t2)
=

(−s1

µ2

)ω(t1)−ω(t2) (−sκ
µ4

)ω(t2)

c1

+
(−s2

µ2

)ω(t2)−ω(t1) (−sκ
µ4

)ω(t1)

c2 , (35)

where κ = s1s2/s = |k⊥|2 and the coefficients ci are real

c1(κ) = |Γ(t2, t1, ln−κ)| sinπ(ω(t1)−φΓ)
sinπ(ω(t1)−ω(t2))

,(36)

c2(κ) = |Γ(t2, t1, ln−κ)| sinπ(ω(t2)−φΓ)
sinπ(ω(t2)−ω(t1))

.(37)

Here φΓ is the phase of the Reggeon-Reggeon-gluon
vertex Γ, i.e.

Γ(t2, t1, lnκ− iπ) = |Γ(t2, t1, ln−κ)|eiπφΓ , (38)

lnΓ(t2, t1, ln−κ) =−γ(a)
16

ln2 −κ
µ2

−1
2

∫ a

0

da′

a′
ln

a
a′

(
γ(a′)
4ε2

+
β (a′)

ε
+δ (a′)

)

−γ(a)
16

ln2 −t1
−t2

− γ(a)
16

ζ2− 1
2

(
ω(t1)+ω(t2)−

∫ a

0

da′

a′(
γ(a′)

4ε
+β (a′)

))
ln
−κ
µ2 . (39)

In a similar way two gluon production amplitude in
the multi-Regge kinematics almost in all physical re-
gions can be obtained by an analytic continuation from
a dispersion-like representation containing 5 contribu-
tions. However, in the physical kinematical region, where
s,s2 > 0 but s1,s3 < 0 the Regge factorization for the
BDS amplitude is broken [32]

M2→4

Γ(t1)Γ(t3)
= C

(−s1

µ2

)ω(t1)

Γ(t2, t1, ln−κ12)

×
(−s2

µ2

)ω(t2)

Γ(t3, t2, ln−κ23)
(−s3

µ2

)ω(t3)

,(40)

where the coefficient C is given below

C = exp

[
γK(a)

4
iπ

(
ln

~q2
1~q

2
3

(~k1 +~k2)2µ2
− 1

ε

)]
. (41)

Similarly for the BDS amplitude describing the transition
3 → 3 in the physical region, where s,s2 = t ′2 > 0 but
s1,s3 < 0 we obtain the result

M3→3

Γ(t1)Γ(t3)
= C′

(−s1

µ2

)ω(t1)

Γ(t2, t1, ln−κ12)

×
(−s2

µ2

)ω(t2)

Γ(t2, t1,− lnκ23)
(−s3

µ2

)ω(t3)

,(42)

where the phase factor C′ is

C′ = exp
[

γK(a)
4

(−iπ) ln
(~q1−~q2)2 (~q2−~q3)2

(~q1 +~q3−~q2)2~q2
2

]
, (43)

which also contradicts the Regge factorization. The rea-
son for these drawbacks is that just in these kinematical
regions the amplitudes A2→4 and A3→3 should contain
the Mandelstam cuts in the j-pane of the t2-channel [32].
Therefore the BDS amplitudes for these processes are not
correct beyond 1 loop.



MANDELSTAM CUTS IN THE ADJOINT
REPRESENTATION AT LLA

The Mandelstam cuts in the elastic amplitude appear
only in the non-planar diagrams because the integrals
over the Sudakov variables α = 2kPA/s and β = 2kpB
for the reggeon momenta k and q−k should have the sin-
gularities above and below the corresponding integration
contours. For the case of planar diagrams this Mandel-
stam condition is fulfilled only for inelastic amplitudes
starting from six external particles in the kinematical re-
gion where s,s2 > 0 and s1,s3 < 0. Two reggeons in the
t2-channel with an adjoint representation of the gauge
group SU(Nc) can also scatter each from another. The
corresponding contribution to the imaginary part in the
s2-channel for the amplitude A2→4 can be written as fol-
lows [32]

1
π

ℑs2 M2→4 = sω(t2)
2

∫ σ+i∞

σ−i∞

× dω
2πi

(
s2

µ2

)ω
f̃2(ω) (44)

The reduced partial wave f̃2(ω) is given by

f̃2(ω) = α̂ε |q2|2
∫

d2−2ε k d2−2ε k′

×Φ1(k,q2,q1)Gω(k,k′,q2)Φ3(k′,q2,q3) (45)

where Φ1,3 are the impact factors

Φ1(k,q2,q1) =
k∗1(q2− k)∗

q∗2(k + k1)∗
,

Φ3(k′,q2,q3) =
k2(k′−q2)
q2(k′− k2)

. (46)

The Green’s function Gω(k,k′,q2) satisfies the BFKL-
type equation

ωG(8A)
ω (k,k′,q2) =

(2π)3δ (2)(k− k′)
|k|2|k +q2|2

+
1

|k|2|k +q2|2
(

K(8A)⊗G(8A)
ω

)
(k,k′,q2) , (47)

where

K(8A)(k,k′;q2)

= δ (2)(k− k′)
(
ω(−|k|2)+ω(−|q2− k|2)−2ω(−|q|2))

+
a
2

k∗(q2− k)k′(q2− k′)∗+ c.c.
|k− k|2 . (48)

The infrared divergencies are extracted from M2→4 in
the form of the Regge factor sω(t2)

2 and coincide with
those of the BDS amplitude, as it should be. The partial

wave f̃2(ω) contains the infrared divergency only in one
loop

α̂ε |q2|2
∫

d2−2ε k
k∗q∗1

q∗2(k + k1)∗
1

|k|2|q2− k|2
kq3

q2(k− k2)

=
a
2

(
ln

|q1|2|q3|2
|k1 + k2|2µ2 −

1
ε

)
, (49)

which is also compatible with the BDS result. But in
upper loops the iteration of the above equation leads to
terms which are absent in the BDS amplitude. For ex-
ample, in two loops we obtain for the imaginary part
of A2→4 in the s2-channel the more complicated expres-
sion [34]

As2 =
a2

2
lns2 ln

|q1−q3|2|q2|2
|q1|2|k2|2 ln

|q1−q3|2|q2|2
|q3|2|k1|2 .

(50)
It is symmetric with respect to the simultaneous transmu-
tation of momenta

k1 ↔ k2 , q1 ↔−q3 . (51)

The same expression is valid also for the imaginary part
in the s-channel.

In a similar way we can calculate the s-channel imag-
inary part of the amplitude for the transition 3→ 3

A3→3
s =

a2

2
ln t ′2 ln

|q2−q1−q3|2|q2|2
|k1|2|k2|2 ln

|q2−q1−q3|2|q2|2
|q3|2|q1|2 .

(52)
Moreover, the BFKL equation for the state with adjoint
quantum numbers can be solved exactly and we obtain
for the imaginary part in s2-channel [34]

ℑM2→4 ∼ sω(t2)
2

∞

∑
n=−∞

∫ ∞

−∞

dν
ν2 + n2

4

(
q∗3k∗1
k∗2q∗1

)iν− n
2

×
(

q3k1

k2q1

)iν+ n
2

exp(ω(ν ,n) lns2) , (53)

where the eigenvalue of the reduced BFKL kernel for the
adjoint representation is

ω(ν ,n) =−a
(

ψ(iν +
|n|
2

)+ψ(−iν +
|n|
2

)−2ψ(1)
)

.

(54)
It turns out, that the leading singularity of the t2-partial
wave corresponds to n = 1 and is situated at

j−1 = ω(t2)+a(4ln2−2).

MULTI-REGGEON MANDELSTAM
CUTS

Let us consider now the Mandelstam cuts constructed
from several reggeons [35]. The non-vanishing contribu-
tion from the exchange of n + 1 reggeons appears in the



planar diagrams only if the number of external lines is
r ≥ 2n + 4. In the case of production of 2n gluons with
the same helicity the amplitude in N = 4 SUSY is propor-
tional to the Born expression. In the leading logarithmic
approximation for the n + 1-reggeon contribution to the
sn+1-channel the proportionality factor has the form [35]

f 2→2+2n
LLA =

(
i

g2 Nc

4π

)n

Q∗Q̃

∫ n

∏
l=1

µ2ε d2−2ε pl

(2π)1−2ε
µ2ε d2−2ε p′l
(2π)1−2ε

×
n

∏
l=1

k∗l k2r−l

|pl |2
G(p, p′;sn+1)
|pn+1|2 Φ1 Φ2 , (55)

where Q and Q̃ are momentum transfers between mo-
menta pA, pA′ and pB, pB′ . The impact factors are

Φ1(~p1, ...,~pn+1) =

n

∏
l=1

p∗l+1

(Q∗−∑l
s=1 p∗s −∑l−1

s=1 k∗s )(Q∗−∑l+1
t=1 p∗t −∑l−1

t=1 k∗t )
,

Φ2(~p′1, ...,~p
′
n+1) =

n

∏
l=1

p′l+1

(Q̃+∑l
s=1 p′s−∑l−1

s=1 k2n−s+1)(Q̃+∑l+1
t=1 p′t −∑l−1

t=1 k2n−t+1)
.

The multi-reggeon Green function satisfies the equa-
tion [35]

∂
∂ lnsn+1

G(~p,~p′;sn+1)

= K G(~p,~p′;sn+1) ,

G(~p,~p′;0) =
n

∏
l=1

(2π)1−2ε

µ2ε δ 2−2ε(pl − p′l) . (56)

Here the kernel K in LLA can be expressed in terms of
the infraredly stable Hamiltonian H

K = ω(t)− g2Nc

16π2 H , ω(t) = a
(

1
ε
− ln

−t
µ2

)
, t =−|q|2 ,

(57)

H = ln
|p1|2|pn+1|2

|q|4 +
n

∑
l=1

Hl,l+1 , (58)

where the pair Hamiltonians are

Hl,l+1 = ln |pl |2 + ln |pl+1|2

+pl p∗l+1 ln |ρl,l+1|2 1
pl p∗l+1

+p∗l pl+1 ln |ρl,l+1|2 1
p∗l pl+1

. (59)

INTEGRABLE OPEN HEISENBERG
SPIN CHAIN

The Hamiltonian for the n + 1-gluon composite state in
the ajoint representation has the property of the holomor-
phic separability [35]

H = h+h∗ , h = ln
p1 pn+1

q2 +
n

∑
l=1

hl,l+1 , (60)

where

hl,l+1 = ln pl +ln pl+1 + pl lnρl,l+1
1
pl

+ pl+1 lnρl,l+1
1

pl+1
.

(61)
Using the duality transformations (cf. [8])

p1 = z0,1 , pr = zr−1,r , q = z0,n , ρr,r+1 = i
∂

∂ zr
= i∂r ,

(62)
the holomorphic hamiltonian can be rewritten in the form
invariant under the Möbius transformations

zk → azk +b
czk +d

. (63)

Therefore we can put

z0 = 0 , zn = ∞ , (64)

Further, by regrouping the terms one can present it in
another form [35]

ln(z2
1∂1)+ ln(∂n−1)+2γ +

n−2

∑
r=1

h′r,r+1 , (65)

where

h′r,r+1 = ln(z2
r,r+1∂r)+ ln(z2

r,r+1∂r+1)−2lnzr,r+1 +2γ

= ln(∂r)+ln(∂r+1)+
1
∂r

lnzr,r+1 ∂r +
1

∂r+1
lnzr,r+1 ∂r+1 +2γ .

(66)
The pair hamiltonian h′r,r+1 coincides in fact with the
expression (12) in the coordinate representation acting
on the wave function with non-amputated propagators.

The remarkable property of h is its commutativity with
the matrix element D(u) of the monodromy matrix (18)
introduced above for the description of integrability of
the BKP equations in the multi-color QCD [35]

[D(u),h] = 0 . (67)

Therefore if we write D(u) as a polynomial in u

D(u) =
n−1

∑
k=0

un−1−k q′k , (68)



then the differential operators

q′k =− ∑
0<r1<r2<...<rk<n

zr1

k−1

∏
s=1

zrs,rs+1

k

∏
t=1

i∂rt (69)

are independent integrals of motion with the properties

[q′k,h] = [q′k,q
′
t ] = 0 . (70)

It turns out, that h coincides with the local hamiltonian
of the open integrable Heisenberg model in which spins
are generators of the Möbius group.

To solve this model one can use the algebraic Bethe
anzatz. In this case it is convenient to go to the transposed
space, where there exists the pseudo-vacuum state Ψ0

Ψ0 =
n−1

∏
r=1

z−2
r , (71)

satisfying the equation

Ct(u)Ψ0 = 0 . (72)

Here Ct(u) is the transposed matrix element C(t) of the
monodromy matrix (18). The eigenvalues of the hamilto-
nian and the integral of motion D(u) are constructed by
applying the product of its matrix elements Bt(u) to the
pseudovacuum state

Ψk =
k

∏
r=1

Bt(ur)Ψ0 . (73)

For such eigenfunctions the spectral parameters ur
should obey the Bethe equations. Instead one can intro-
duce the Baxter function which is the generating function
of the Bethe roots

Q(u) =
∞

∏
k=1

(u−uk) . (74)

Generally the number of the roots uk is infinite. The
Baxter function satisfies the Baxter equation which is
reduced to the simple recurrent relation for our open spin
chain

Λ(u)Q(u) = (u+ i)n−1 Q(u+ i) , (75)

where Λ(u) is an eigenvalue of the integral of motion
D(u) and can be written in terms of its roots

D(u)Ψa1,a2,...,an−1 = Λ(u)Ψa1,a2,...,an−1 , Λ(u)=
n−1

∏
r=1

(u−iar) .

(76)
As a result, the solution of the Baxter equation can be
found in the form [35]

Q(u) =
n−1

∏
r=1

Γ(−iu−ar)
Γ(−iu+1)

(77)

up to a possible factor being a periodic function of −iu.
The Regge trajectory of the composite state of n− 1

gluons has the additivity property

ωn(t) = ω(t)− a
2

E , E =
n−1

∑
r=1

ε(ar)+
n−1

∑
r=1

ε(ãr) , (78)

where

ε(a) = ψ(a)+ψ(1−a)−2ψ(1) , ar = iνr +
nr

2
. (79)

THREE GLUON COMPOSITE STATE

The wave function of the three gluon composite state in
the adjoint representation can be constructed as a bilinear
combination of eigenfunctions of the integrals of motion
D(u) and D∗(u) having the property of single-valuedness
in the coordinate space [35]

Ψ∼ za1+a2
2 (z∗2)

ã1+ã2

∫ d2y
|y|2 y−a2(y∗)−ã2

(
y−1
y− x

)a1
(

y∗−1
y∗− x∗

)ã1

,

x =
z2

z1
.

One can perform its Fourie transformation to the mo-
mentum space

Ψt(~p1,~p2)= (p1 + p2)−a1−a2(p∗1 + p∗2)
−ã1−ã2 φ(~y) , y =

p2

p1
,

where

φ(~y)=
∫

d2t
(

1
t y

+1
)a1

(
1

t∗ y∗
+1

)ã1

(1−t)a2−1 (1−t∗)ã2−1 .

This function can be presented in terms of its Mellin
transformation

Ψt(~p1,~p2) = (p1 + p2)−a1−a2(p∗1 + p∗2)
−ã1−ã2

∫
d2uφ(u, ũ)

(
p1

p2

)−iu (
p∗1
p∗2

)−iũ

,

where

−iu = iνu +
Nu

2
, −iũ = iνu− Nu

2
,

∫
d2u≡

∫ ∞

−∞
dνu

∞

∑
Nu=−∞

.

and

φ(u, ũ) =
π2Γ(1+ ã1)Γ(a2)
Γ(−a1)Γ(1− ã2)

Γ(iu)Γ(1+ iũ)
Γ(−iu)Γ(1− iũ)

Γ(−iu−a1)Γ(−iu−a2)
Γ(1+ iũ+ ã1)Γ(1+ iũ+ ã2)

.



Really the last form of Ψt corresponds to the Baxter-
Sklyanin representation [11], because the function φ is
a product of the pseudovacuum state and the Baxter
function [35]

φ(u, ũ) = uũQ(u, ũ) ,

where

Q(u, ũ)∼ Γ(iu)Γ(iũ)
Γ(1− iu)Γ(1− iũ)

Γ(−iu−a1)Γ(−iu−a2)
Γ(1+ iũ+ ã1)Γ(1+ iũ+ ã2)

.

DISCUSSION OF OBTAINED RESULTS

It was demonstated, that Pomeron in QCD is a com-
posite state of reggeized gluons. The BFKL dynamics
is integrable in LLA. In the next-to-leading approxima-
tion in N = 4 SUSY the equation for the Pomeron wave
function has remarkable properties including the analyt-
icity in the conformal spin n and the maximal transcen-
dentality. In this model the BFKL Pomeron coincides
with the reggeized graviton. The BDS ansatz for scatter-
ing amplitudes in N = 4 SUSY does not agree with the
BFKL approach in the multi-Regge kinematics. The rea-
son for this drawback is the absence of the Mandelstam
cuts. The BFKL-like equation for the composite state
of two reggeized gluons with adjoint quantum numbers
is explicitely solved. It is shown, that the equation for
the composite state of an arbitrary number of reggeized
gluons in the adjoint representation is equivalent to the
Schrödinger equation for an integrable open Heisenberg
spin chain. The wave function for three gluon compos-
ite state is constructed in the Baxter-Sklyanin represen-
tation.
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