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Abstract. Supersymmetric vacua of two dimensional N = 4 gauge theories with matter, softly broken by the twisted masses
down to N = 2, are shown to be in one-to-one correspondence with the eigenstates of integrable spin chain Hamiltonians.
Examples include: the Heisenberg SU(2) XXX spin chain which is mapped to the two dimensional U(N) theory with
fundamental hypermultiplets, the XXZ spin chain which is mapped to the analogous three dimensional super-Yang-Mills
theory compactified on a circle, the XY Z spin chain and eight-vertex model which are related to the four dimensional theory
compactified on T2. A consequence of our correspondence is the isomorphism of the quantum cohomology ring of various
quiver varieties, such as cotangent bundles to (partial) flag varieties and the ring of quantum integrals of motion of various spin
chains. The correspondence extends to any spin group, representations, boundary conditions, and inhomogeneity, it includes
Sinh-Gordon and non-linear Schrödinger models as well as the dynamical spin chains like Hubbard model. Compactifications
of four dimensional N = 2 theories on a two-sphere lead to the instanton-corrected Bethe equations.

Keywords: Bethe ansatz, supersymmetric vacua
PACS: 11.30.Pb, 12.60.Jv

GAUGE THEORIES AND INTEGRABLE
SYSTEMS

The dynamics of gauge theory is a subject of long history
and the ever growing importance.

In the last fifteen years or so it has become clear
that the gauge theory dynamics in the vacuum sector is
related to that of quantum many-body systems. A classic
example is the equivalence of the pure Yang-Mills theory
with gauge group U(N) in two dimensons to the system
of N free non-relativistic fermions on a circle. The same
theory embeds as a supersymmetric vacuum sector of a
(deformation of) N = 2 super-Yang-Mills theory in two
dimensions.

A bit less trivial example found in [1] is that the vac-
uum sector of a certain supersymmetric two dimensional
U(N) gauge theory with massive adjoint matter is de-
scribed by the solutions of Bethe ansatz equations for the
quantum Nonlinear Schrödinger equation (NLS) in the
N-particle sector. The model of [1] describes the U(1)-
equivariant intersection theory on the moduli space of so-
lutions to Hitchin’s equations [2], just as the pure Yang-
Mills theory describes the intersection theory on moduli
space of flat connections on a two dimensional Riemann
surface. This subject was revived in [3, 4] by showing
that the natural interpretation of the results of [1] is in
terms of the equivalence of the vacua of the U(N) Yang-
Mills-Higgs theory in a sense of [3] and the energy eigen-
states of the N-particle Yang system, i.e. a system of N
non-relativistic particles on a circle with delta-function

interaction. Furthermore [3, 4] suggested that such a cor-
respondence should be a general property of a larger
class of supersymmetric gauge theories in various space-
time dimensions.

Prior to [1] a different connection to spin systems with
long-range interaction appeared in two dimensional pure
Yang-Mills theory with massive matter [5, 6, 7, 8]. Three
dimensional lift of latter gauge theory describes relativis-
tic interacting particles [9], while four dimensional theo-
ries lead to elliptic generalizations [10].

In this paper we formulate precisely the correspon-
dence between the two dimensional N = 2 supersym-
metric gauge theories and quantum integrable systems in
a very general setup. The N = 2 supersymmetric theo-
ries have rich algebraic structure surviving quantum cor-
rections [11]. In particular, there is a distinguished class
of operators (OA), which commute with some of the
nilpotent supercharges Q of the supersymmetry algebra.
They have no singularities in their operator product ex-
pansion and, when considered up to the Q-commutators,
form a (super)commutative ring, called the chiral ring
[11, 12]. The supersymmetric vacua of the theory form
a representation of that ring. The space of supersymmet-
ric vacua is thus naturally identified with the space of
states of a quantum integrable system, whose Hamilto-
nians are the generators of the chiral ring. The duality
states that the spectrum of the quantum Hamiltonians co-
incides with the spectrum of the chiral ring. The nontriv-
ial result of this paper is that arguably all quantum in-
tegrable lattice models from the integrable systems text-
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books correspond in this fashion to the N = 2 supersym-
metric gauge theories, essentially also from the (differ-
ent) textbooks. More precisely, the gauge theories which
correspond to the integrable spin chains and their limits
(the non-linear Schrödinger equation and other systems
encountered in [1, 3, 4] being particular large spin lim-
its thereof) are the softly broken N = 4 theories. It is
quite important that we are dealing here with the gauge
theories, rather then the general (2,2) models, since it is
in the gauge theory context that the equations describing
the supersymmetric vacua can be identified with Bethe
equations of the integrable world.

At this point we should clarify a possible confusion
about the rôle of integrable systems in the description of
the dynamics of supersymmetric gauge theories.

It is known that the low energy dynamics of the four
dimensional N = 2 supersymmetric gauge theories is
governed by the classical algebraic integrable systems
[13]. Moreover, the natural gauge theories lead to inte-
grable systems of Hitchin type, which are equivalent to
many-body systems [14] and conjecturally to spin chains
[15, 16, 17, 18].

We emphasize, however, that the correspondence be-
tween the gauge theories and integrable models we dis-
cuss in the present paper and in [1, 3, 4, 19, 20] is of a
different nature. The low energy effective theory in four
dimensions is described by the classical algebraic inte-
grable systems of type [13], while the vacuum states we
discuss presently are mapped to the quantum eigenstates
of a different, quantum integrable system1.

The gauge theories we study in two dimensions, as
well as their string theory realizations, have a natural
lift to three and four dimensions, while keeping the same
number of supersymmetries, modulo certain anomalies.
Indeed, the N = 2 super-Yang-Mills theory in two di-
mensions is a dimensional reduction of the N = 1 four
dimensional Yang-Mills theory (this fact is useful in the
superspace formulation of the theory [23]). Instead of
the dimensional reduction one can take the compacti-
fication on a two dimensional torus T2. That way the
theory will look macroscopically two dimensional, but
its effective low energy dynamics is different due to the
contribution of the Kaluza-Klein modes (the early exam-
ples of these corrections in the analogous compactifica-

1 Another possible source of confusion is the emergence of the Bethe
ansatz and the spin chains in the N = 4 supersymmetric gauge theory
in four dimensions. In the work [21] and its further developments [22]
the anomalous dimensions of local operators of the N = 4 supersym-
metric Yang-Mills theory are shown (to a certain loop order in pertur-
bation theory) to be the eigenvalues of some spin chain Hamiltonian.
The gauge theory is studied in the ’t Hooft large N limit. In our story
the gauge theory has less supersymmetry, N is finite, and the operators
we consider are from the chiral ring, i.e. their conformal dimensions
are not corrected quantum mechanically. Our goal is to determine their
vacuum expectation values.

tions from five to four dimensions can be found in [24]).
This is seen, for example, in the geometry of the (clas-
sical) moduli space of vacua, which is compact for the
theory obtained by compactification from four to two di-
mensions (it is isomorphic to the moduli space BunG of
holomorphic GC-bundles on elliptic curve), and is non-
compact in the dimensionally reduced theory. Quantum
mechanically, though, the geometry of the moduli space
of vacua is more complicated, in particular it will acquire
many components. The twisted superpotential is a mero-
morphic function on the moduli space. We show that the
critical points of this function determine the Bethe roots
of the anisotropic spin chain, the XY Z magnet. Its XXZ
limit will be mapped to the three dimensional gauge the-
ory compactified on a circle. We thus get a satisfying pic-
ture of the elliptic, trigonometric, and rational theories
corresponding to the four dimensional, three dimensional
and the two dimensional theories respectively.

Our duality between the gauge theories and the quan-
tum integrable systems can be used to enrich both sub-
jects.

A longer version. This note is a shortened version of
[19]. In [20] we give all the details covering the corre-
spondence between vacuum structure of supersymmetric
gauge theories and quantum integrable models from all
perspectives, including the siring theory realization. Here
we just mention that the guiding equations for the super-
symmetric vacua for the two, three, and four dimensional
models (compactified on the tori of appropriate dimen-
sion) can be summarized as:

exp
(

∂W̃ eff(σ)
∂σ i

)
= 1 (1)

where W̃ e f f (σ) is the effective twisted superpotential,
while σi are the eigenvalues of the complex scalar in
the vector multiplet. It is this equation that coincides
with the Bethe equation determining the exact spectrum
of a quantum integrable system. In this correspondence
W̃ e f f (σ) coincides with Yang-Yang function Y (λ ) (λi
denoting the rapidities) counting the Bethe roots in quan-
tum integrable systems:

Y (λ ) ↔ W̃ eff(σ)
λ ↔ σ

(2)

We identify these quantum integrable systems in all our
examples and study the consequences. In [19] the Hamil-
tonians of the quantum integrable system are identi-
fied with the operators of quantum multiplication in the
equivariant cohomology of the hyperkähler quotients,
corresponding to the Higgs branches of our gauge the-
ories. In particular, the length L inhomogeneous XXX 1

2

chain (with all local spins equal to 1
2 ) corresponds to the
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equivariant quantum cohomology of the cotangent bun-
dle T ∗Gr(N,L) to the Grassmanian Gr(N,L). This result
complements nicely the construction of H. Nakajima and
others of the action of the Yangians [25, 26] and quantum
affine algebras on the classical cohomology and K-theory
respectively of certain quiver varieties. Next, [19] applies
these results to the two dimensional topological field the-
ories. We discuss various twists of our supersymmetric
gauge theories. The correlation functions of the chiral
ring operators map to the equivariant intersection indices
on the moduli spaces of solutions to various versions of
the two dimensional vortex equations, with what is math-
ematically called the Higgs fields taking values in various
line bundles (in the case of Hitchin equations the Higgs
field is valued in the canonical line bundle). The main
body of [19] has essentially shown that all known Bethe
ansatz-soluble integrable systems are covered by our cor-
respondence. However, there are more supersymmetric
gauge theories which lead to the equations (1) which can
be viewed as the deformations of Bethe equations. For
example, a four dimensional N = 2∗ theory compacti-
fied on S2 with a partial twist leads to a deformation of
the non-linear Schrödinger system with interesting mod-
ular properties (we devote last section of current paper
to this example). Another interesting model comes from
the quantum cohomology of instanton moduli spaces and
the Hilbert scheme of points.

The long paper [19] and the example of the quan-
tum cohomology of T ∗Gr(N,L) and its relation to the
Heisenberg magnet are reviewed in detail in [20].
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THE GAUGE THEORY

Here we give a brief review of the relevant gauge theo-
ries.

Gauge theories with four supercharges

We study two dimensional N = (2,2) supersymmet-
ric gauge theory with some matter. The matter fields are
generally in the chiral multiplets which we denote by the
letters Q, Q̃, and Φ (sometimes we use X to denote mat-
ter fields without reference to their gauge representation
type), the gauge fields are in the vector multiplet V. We
also use the twisted chiral multiplets Σ, as e.g. the field
strength Σ = D+D̄−V is in the twisted chiral multiplet.

V = θ−θ̄−(A0−A1)+θ+θ̄+(A0 +A1)−
√

2σθ−θ̄+

−
√

2σ̄θ+θ̄−+2iθ−θ+(θ̄−λ̄−+ θ̄+λ̄+)+

+2iθ̄+θ̄−(θ+λ+ +θ−λ−)+2θ−θ+θ̄−θ̄+H (3)

where we use a notation H for the auxiliary field (in most
textbooks it is denoted by D).

X = X(y)+
√

2
(
θ+ψ+(y)+θ−ψ−(y)

)
+θ+θ−F(y)

(4)
where

y± = x±− iθ±θ̄± ,

and the twisted chiral multiplet Σ:

Σ = σ(ỹ)+ i
√

2
(
θ+λ̄+(ỹ)− θ̄−λ−(ỹ)

)
+

+
√

2θ+θ̄− (H(ỹ)− iF01) (5)

where F01 = ∂0A1 − ∂1A0 + [A0,A1] is the gauge field
strength, and

ỹ± = x±∓ iθ±θ̄±

3 The RTN contract 005104 "ForcesUniverse", the ANR grants ANR-
06-BLAN-3_137168 and ANR-05-BLAN-0029-01 (NN), the RFBR
grants RFFI 06-02-17382 and NSh-8065.2006.2 (NN), the NSF
grant No. PHY05-51164 (NN), the SFI grants 05/RFP/MAT0036,
08/RFP/MTH1546 (SS) and the Hamilton Mathematics Institute TCD
(SS). Part of research was done while NN visited NHETC at Rutgers
University in 2006, Physics and Mathematics Departments of Prince-
ton University in 2007, Simons Center at the Stony Brook University in
2008, KITP at the UC Santa Barbara in 2009, while SSh visited CERN
in 2007 and 2008
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Lagrangians

The action of the corresponding two dimensional
quantum field theory action has three types of terms -
the D-terms, the F-terms and the twisted F-terms:

D :
∫

d2xd4θ tr
(
ΣΣ̄

)
+K(eV/2 X , X̄eV/2)

F :
∫

d2xdθ+dθ− W (X) + c.c.

F tw :
∫

d2xdθ+dθ̄− W̃ (Σ) + c.c.

(6)

Global symmetries and twisted masses

The typical N = (2,2) gauge theory has the matter
fields X transforming in some linear4 representation R
of the gauge group G. Let us specify the decomposition
of R onto the irreducible representations of G:

R =⊕i Mi⊗Ri (7)

where Ri are the irreps of G, and Mi are the multiplicity
spaces. The group

Hmax =×i U(Mi) (8)

acts on R and this action commutes with the gauge group
action. The actual global symmetry group H of the theory
may be smaller then (8) : H ⊂Hmax, as it has to preserve
both D and the F-terms in the action.

The theory we are interested in can be deformed by
turning on the so-called twisted masses m̃ [27], which
belong to the complexification of the Lie algebra of the
maximal torus of H:

m̃ = (m̃i) , m̃i ∈ End(Mi)∩H (9)

The superspace expression for the twisted mass term is
[28, 29]:

Lm̃ass =
∫

d4θ trR X†

(
∑

i
eṼi ⊗ IdRi

)
X (10)

where
Ṽi = m̃i θ+θ̄− (11)

The twisted masses which preserve the N = 4 super-
symmetry will be denoted by µ , and the ones which
break it down to N = 2, by u.

When the twisted masses are turned on in the generic
fashion, the matter fields are massive and can be inte-
grated out. As a result, the theory becomes an effective

4 In [19] we also discuss the generalization where X takes values in
some non-linear space with the G-action

pure N = 2 gauge theory with an infinite number of in-
teraction terms in the Lagrangian, with the high deriva-
tive terms suppressed by the inverse masses of the fields
we integrated out. Of all these terms the F-terms, i.e.
the effective superpotential, or the twisted F-terms, i.e.
the effective twisted superpotential, can be computed ex-
actly. In fact, these terms only receive one-loop contri-
butions. Let m̃ denote collectively the set of the twisted
masses of the fields we are integrating out. We get:

W̃ effmatter(σ) = ∑
b

2πi tbtrbσ+

+ trR (σ + m̃)(log(σ + m̃)−1) (12)

where for each U(1) factor in G we have introduced
a Fayet-Illiopoulos term which together with the corre-
sponding theta-angle combine into a complex coupling
tb,

tb =
ϑb

2π
+ irb . (13)

The generator of the corresponding U(1) factor in G is
denoted in (12) by trbσ . We put the subscript “matter”
in (12) in order to stress the fact that it only includes the
loops of the matter fields.

There are other massive fields which can be inte-
grated out on the Coulomb branch. For example, the g/t-
components of the vector multiplets (where g denotes Lie
algebra corresponding to Lie groups G and t is its Car-
tan sub-algebra), the W -bosons and their superpartners.
Their contribution to the effective twisted superpotential
is rather simple:

W̃ eff
gauge =− ∑

α∈∆
〈α,σ〉 [ log〈α,σ〉 −1 ] =−2πi〈ρ,σ〉

(14)
where

ρ =
1
2 ∑

α∈∆+

α (15)

is half the sum of the positive roots of g. It may appear
that the expression (14) is inconsistent with the gauge in-
variance, however the effective interaction (14) is gauge
invariant. The total effective twisted superpotential is,
therefore:

W̃ eff(σ) = W̃ eff
matter(σ)+W̃ eff

gauge(σ) (16)

Superpotential deformations and twisted masses

The supersymmetric field theories also have the su-
perpotential deformations, which correspond to the F-
terms in (6). The superpotential W has to be a holo-
morphic gauge invariant function of the chiral fields,
such as Φ,Q, Q̃. It may be not invariant under the
maximal symmetry group Hmax, thus breaking it to a
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subgroup H or completely. For example, the so-called
complex mass of the fundamental and anti-fundamental
fields [30] comes from the superpotential Wcomplexmass =
∑a,b mb

aQ̃bQa, which breaks the U(nf) ×U(nf) group
down to U(1)min(nf,nf).

In all cases discussed in this paper, in spacetime di-
mensions two, three and four, one can consider more
sophisticated superpotentials, involving the fundamental,
anti-fundamental, and adjoint chiral fields:

WQ̃ΦQ = ∑
a,b

Q̃amb
a(Φ)Qb = ∑

a,b;s
mb

a;sQ̃
aΦ2sQb (17)

The case of most interest for us, that of the two dimen-
sional ultraviolet finite theories corresponds to nf = nf =
L. In this case we will see later that equations describ-
ing supersymmetric vacua are linked to known quantum
integrable lattice models.

Examples

There are two classes of examples: a.) the asymptoti-
cally free theories and b.) the asymptotically conformal
theories. The a.) examples include the gauge theories
which look at low energy as the N = 2 sigma models
with various Kähler target spaces: the complex projective
space CPL−1, the Grassmanian Gr(N,L), or, more gener-
ally, the (partial) flag variety F(n1,n2, . . . ,nr,nr+1 ≡ L).
The b.) examples can also be identified at the low en-
ergy level with the sigma models. These sigma models
typically have the hyperkähler target spaces, such as the
cotangent bundles to the Kähler manifolds from the a.)
list. The b.) examples turn out to include, via (1), essen-
tially all known quantum integrable models of statistical
physics.

Of course, by taking an appropriate scaling limit one
can get the a.) models from the b.) models. For example,
the Grassmanian model (which is so extensively studied
in [31]) is a limit of the T ∗Gr(N,L) model in the limit
where the twisted mass u corresponding to the rotations
of the cotangent direction is sent to infinity, with the
complexified Kähler class adjusted in such a way, that
the effective mass scale:

ΛGr = ue
2πit

L

remains finite. This corresponds to a non-Hermitian de-
formation of the Heisenberg magnet which is dual, via
(1), to the original T ∗Gr(N,L) theory.

The reason why the ultraviolet finiteness is so special
in the relation to the quantum integrability has to do
with the S-matrix nature of the Bethe equations which
we identify with the vacuum equation (1).

In this note we consider the G = U(N) gauge group
only. Here we present the effective twisted superpotential

(16) for the main example of the b.) class. There are
many more examples presented in [19].

Two dimensions

One can start with the so-called N = 2∗ theory. It
has R = g⊗C, i.e. the adjoint chiral multiplet . In
the absence of the twisted mass term this is the N = 4
theory, the dimensional reduction of the pure N = 2
super-Yang-Mills from four dimensions. This theory has
a global U(1) symmetry, which rotates the adjoint chiral
multiplet, e.g. 7→ eiϕ . We can turn on the correspond-
ing twisted mass m̃ = iu which breaks N = 4 to N = 2
(the factor of i is introduced for the later convenience).
The effective twisted superpotential for G = U(N) is:

W̃ eff(σ) =
N

∑
i, j=1

(σi−σ j + iu)(log(σi−σ j + iu)−1)

−2πi
N

∑
i=1

(
t + i− 1

2
(N +1)

)
σi (18)

A more interesting theory is obtained by taking

R = V ⊗V ∗⊗L ⊕V ⊗F ⊕V ∗⊗ F̃ .

which corresponds to the theory with the Hmax =U(L)×
U(L)×U(1) global symmetry group. Here V = CN is the
N-dimensional fundamental representation of G, F ≈
CL, F̃ ≈ CL are the L-dimensional fundamental repre-
sentations of the first and the second U(L) factors in the
flavour group, and L is the standard one-dimensional
representation of the global group U(1). In simple terms,
this theory has the matter content of the four dimensional
Nc = N, N f = L, N = 2 gauge theory with fundamental
hypermultiplets, however, the supersymmetry is half that
of the four dimensional theory. This theory has 2L + 1
twisted mass parameters (we skip tildes from now on):
(mf

a,m
f̄
a)

L
a=1,m

adj =−iu. Upon integrating out the matter
fields and the W -bosons we get the theory of the Abelian
vector multiplet with the effective twisted superpotential:

W̃ eff
Q̃ΦQ(σ) =

N

∑
i=1

L

∑
a=1

[(
σi +mf

a

)(
log

(
σi +mf

a

)
−1

)

+
(
−σi +mf̄

a

)(
log

(
−σi +mf̄

a

)
−1

)]
+

+
N

∑
i, j=1

(
σi−σ j +madj

) (
log

(
σi−σ j +madj

)
−1

)
−

−2πi
N

∑
i=1

(
t + i− 1

2
(N +1)

)
σi (19)

The generic twisted masses are incompatible with any
tree level superpotential. However, for the special choice

Bethe Ansatz and supersymmetric vacua 5



of the twisted masses one can turn on the tree level
superpotential. Its variation does not change the effective
twisted superpotential (19) though. We shall discuss this
point later.

Three dimensions

Consider now the theory on R2 × S1. It suffices to
make all the fields depend on an extra coordinate x2 = y,
y ∼ y + 2π . Since the translations in y are the global
symmetry of the theory we can turn on the corresponding
twisted mass m̃5. This is equivalent to promoting the real
part of the complex scalar in the vector multiplet to the
covariant derivative:

σ(t,x)−→ 1
R

∂y +σ(t,x,y) ,

σ̄(t,x)−→− 1
R

∂y + σ̄(t,x,y)
(20)

where R is the radius of the circle S1. In other words,

σ =
1
R

Ay +σR (21)

where Ay is the gauge field component (the y coordinate
being dimensionless the Ay field is dimensionless too,
while σ has a dimension of mass). The twisted mass
corresponding to the translations is m̃ = i

R . Thus, the
Kaluza-Klein modes with momentum n, n ∈ Z, have the
corresponding twisted mass

m̃n =
in
R

(22)

To compute the effective twisted superpotential, it suf-
fices to enumerate the Kaluza-Klein modes and sum up
their contributions. One needs to use a kind of zeta-
regularization, which can be justified, e.g. by topological
field theory methods [24].

For definiteness let us consider the contribution of a
matter field in the representation R of the gauge group.
Let m̃ denote the ordinary two dimensional twisted mass,
corresponding to the centralizer of G in R which pre-
serves other couplings of the theory, such as the superpo-
tential. We assume m̃ sufficiently generic so that all the
modes of the corresponding matter multiplet are massive.

5 The space of fields is of course acted on by Diff(S1), but the La-
grangian is invariant only under S1, the translations.

The sum over the Kaluza-Klein modes gives:

W̃ eff
matter(σ) =

trR

[
∑
n∈Z

(
σ + m̃+

in
R

)(
log

(
σ + m̃+

in
R

)
−1

)]
∼

∼ 1
2πR

trR
[
Li2

(
e−2πR(σ+m̃)

)]
(23)

In addition to the matter-induced twisted superpotential
we also have a contribution of the W -bosons:

W̃ eff
gauge =−trg/t

[
1

2πR
Li2

(
e−2πRσ )]

=

=
πR
2

tradj
(
σ2)+2πi〈ρ ,σ〉 (24)

where we used:

Li2(e−x)+Li2(ex) =
π2

3
− iπx− x2

2
(25)

and dropped an irrelevant constant. The quadratic term in
(24) corresponds to the anomaly-induced Chern-Simons
interaction [32, 33] in the three dimensional theory.

Four dimensions

We can lift the theory to the N = 1 supersymmetric
Yang-Mills theory (with matter), compactified on a two-
torus T2. Again, we can view the lift to four dimensions
as the two dimensional theory with the infinite number of
fields, which depend on the two additional coordinates
(y,z), with y ∼ y + 2π , z ∼ z + 2π . The theory is regu-
larized by the twisted masses corresponding to the trans-
lations along T2. We choose one of the masses to be i

R ,
then the other is iτ

R . Here τ is the complex modulus of T2.
The normalized holomorphic coordinate on T2 is given
by: w = 1

2π (y+ τz). The gauge theory is sensitive to the
metric on the torus and a two-form, the so-called B-field,
via the coupling

∫

R2×T2
B∧ trF . (26)

Similarly to the three dimensional lift of the previous sec-
tion the field σ gets promoted to the covariant derivative
operator (τ2 = Imτ):

σ(t,x)→ τ2

iπR
∂̄ +σ(t,x,y,z),

σ̄(t,x)→ τ2

iπR
∂ + σ̄(t,x,y,z)

(27)

where
∂̄ =

iπ
τ2

(∂z− τ∂y)
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The invariance under the large gauge transformations
now translates to the double-periodicity of the twisted
superpotential:

σ → σ +
i
R

(m+nτ) , m,n ∈ Z (28)

The effective twisted superpotential is given by (q =
exp2πiτ):

W̃ eff =
πR
2

trR(σ + m̃)2 +
πiτ
6

trR(σ)+
1

2πR
×

∞

∑
n=1

trR
[

Li2
(

qn−1e−2πR(σ+m̃)
)
−Li2

(
qne2πR(σ+m̃)

)]

=
πR
2

trR(σ + m̃)2 +
πiτ
6

trR(σ)+

+
1

2πR ∑
n∈Z 6=0

trR
[

e2πRn(σ+m̃)
]

n2(1−qn)
(29)

plus linear terms.

Supersymmetric vacua of N=2 theories

The only local gauge invariant of the Abelian gauge
field in two dimensions is the field strength F01 which is
subject to the only global constraint:

1
2πi

∫

Σ
F i = mi ∈ Z (30)

i.e. the integrality of the magnetic flux. In addition, the
global invariants of the T-valued gauge field include the
holonomies, which are irrelevant for our discussion at the
moment.

In order to minimize the potential energy and find the
vacua of the theory we promote Fα

01 to the independent
fields, while adding at the same time the term

r

∑
i=1

ni

∫

Σ
F i (31)

to the action (cf. [34, 35, 36]). Following [37], the shift
(31) is equivalent to the shift

W̃ eff(σ)−→ W̃ eff
~n (σ) = W̃ eff(σ)−2πi

r

∑
i=1

niσ i (32)

where now D± iF are two independent auxiliary fields,
which can be integrated out. Thus the target space of the
effective sigma model becomes, a priori, disconnected,
with ~n labeling the connected components. In fact, the
actual connected components are labeled by the equiv-
alence classes of ~n up to the action of the monodromy

group (the effective superpotential is not a univalent
function of σ ). The potential on the component, labelled
by ~n is given by (note that unlike the standard expres-
sions involving “. . .minn(x+2πn)2, which follows from
the pair creation in the background electric field induced
by the theta angle. . . ” it is consistent with supersymme-
try and holomorphy):

U~n =
1
2

gi j

(
−2πini +

∂W̃ eff

∂σ i

)(
+2πin j +

∂ ˜̄W
eff

∂ σ̄ j

)

(33)
The minima of the effective potential (33) are thus the
solutions of the equations:

1
2πi

∂W̃ eff(σ)
∂σ i = ni (34)

This equation is derived under very general conditions.
Everything is hidden in W̃ eff. The ni dependence in (34)
can be eliminated by exponentiating both sides:

exp
(

∂W̃ eff(σ)
∂σ i

)
= 1 (35)

Examples of the vacuum equations

Old examples: asymptotically free theories

Asymptotically free theories are certain limits of
asymptotically conformal theories. Since our main ex-
amples are asymptotically conformal for completeness
we give couple of examples of asymptotically free theo-
ries first.

CPL−1 model. G =U(1), R = R+1⊗CL, where R+1
is a one-dimensional charge +1 representation of U(1).
From twisted effective suprpotential of this model we
immediately derive:

L

∏
α=1

(σ + m̃α) = q≡ e2πi t (36)

which implies that the model has L isolated vacua, and
the theory at each vacuum is massive, for the generic
values of the twisted masses m̃α . For vanishing twisted
masses the equation (36) simplifies to σL = q which is
the famous quantum cohomology ring of CPL−1. For the
generic twisted masses the equation (36) describes the
U(L)-equivariant quantum cohomology H∗

U(L)(CPL−1)
ring.

The next example is that of the

Bethe Ansatz and supersymmetric vacua 7



Grassmanian Gr(N,L) model. G = U(N) and R =
CN ⊗CL. Using the effective twisted superpotential of
this model we derive:

L

∏
α=1

(σl + m̃α) = (−1)N+1 e2πit , l = 1, . . . ,N (37)

We should supplement the equations (37) with the con-
dition that σl 6= σm for l 6= m and identify the solutions
which differ by the permutations of σl’s. In other words,
the equations (37) should be viewed as equations on the
elementary symmetric functions

cl = ∑
i1<...<il

σi1σi2 . . .σil (38)

which can be compactly written using the gauge invariant
order parameter Q(x),

Q(x)≡ det(x−σ) =
N

∏
i=1

(x−σi) = xN +
N

∑
i=1

(−1)icixN−i ,

(39)
which we shall call the Baxter-Chern (BC) order param-
eter, as:

L

∏
α=1

(x+ m̃α)+(−1)Nq = t(x)Q(x) (40)

for some polynomial t(x) of degree L−N,

t(x) = xL−N +
L−N

∑
j=1

t jxL−N− j .

This polynomial is uniquely fixed in terms of ci’s from
the equation (40) by expanding both sides at x = ∞ and
equating the coefficients of xL−N− j, j = 1, . . . ,L− N.
In the classical limit q → 0 the polynomial Q(x) is
essentially the U(L)-equivariant Chern polynomial of
the tautological rank N bundle E over the Grassmanian
Gr(N,L), while t(x) is the U(L)-equivariant Chern poly-
nomial of the tautological dual bundle E⊥ of rank L−N.
The relation (40) then reads simply as the consequence
of the exactness of the sequence:

0−→ E −→ F ≈ CL −→ E⊥ −→ 0

N = 2∗ theory. The example of the pure N = 4
theory broken down to N = 2 by the twisted mass term
for the adjoint chiral multiplet is the first example where
the supersymmetry is broken, for N > 1. Here G =U(N),
SU(N), SO(N), Sp(N) and R = g⊗C, i.e. the adjoint
representation. Using (18) we derive:

N

∏
j=1

σi−σ j +m
σi−σ j−m

=−q , (41)

which can be neatly rewritten using our Q-operator (39)
again:

Q(x+m)+qQ(x−m) = (1+q)Q(x) (42)

It is easy to see that this equation has no solutions for
σi’s for N > 2, or for N = 1,q 6= 1 and has a valley of
solutions for N = 1, q = 1.

Hitchin theory. The model studied in [1, 3, 4] corre-
sponds to the N = 2∗ theory with the tree level twisted
superpotential6:

W̃ (σ) =
λ
2

trσ2 , (43)

which corresponds to the two-observable representing
the Kähler form on the Hitchin’s moduli space MH . This
leads to the change in the right hand side of (41):

N

∏
j=1

σi−σ j +m
σi−σ j−m

= exp2πiλ σi , (44)

and one now gets solutions for σi’s for all N. The topo-
logical twist of this theory, introduced in [1] and was
studied in detail in [3, 4].

New examples: asymptotically conformal theories

Our main example will be the U(N) gauge theory with
L fundamental chiral multiplets Qa, L anti-fundamental
chiral multiplets Q̃a, and one adjoint chiral multiplet
Φ. This matter content corresponds to the gauge the-
ory with extended supersymmetry, N = 4, which the
dimensional reduction of the four dimensional N = 2
theory. The adjoint Φ is a part of the vector multiplet in
four dimensions, while the chiral fundamental and anti-
fundamentals combine into the four dimensional hyper-
multiplet in the fundamental representation. We are deal-
ing, therefore, with the matter content of the four dimen-
sional N = 2 theory with Nc = N, N f = L. If the super-
potential ∑a Q̃aΦQa is added, then the theory does have
the four dimensional N = 2 supersymmetry.

Since the gauge group has a center U(1) one can turn
on the Fayet-Illiopoulos term, and the theta angle as we
already explained, which we combine into a complexi-
fied coupling ϑ 7→ t = ϑ

2π + ir.
First, we consider the theory with general twisted

masses for the chiral fundamentals, anti-fundamentals,
and the adjoint field (which is compatible only with the
zero superpotential). We then turn on the superpotential
and discuss the consequences.

6 In most of the discussion we have the tree level superpotential, rather
then the tree level twisted superpotential turned on.
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Two dimensions. Using (34) with (19) we arrive at
the equations for vacua (we shift t by L/2 to avoid extra
phases in the right hand side):

L

∏
a=1

σi +mf
a

σi−mf̄
a

=−e2πit
N

∏
j=1

σi−σ j−madj

σi−σ j +madj (45)

The equation (45) is written in terms of the eigenvalues
σi of the complex scalar σ . The equations have solutions
related by permuting σi’s. These solutions are physically
equivalent. It is better to formulate (45) directly in the
gauge invariant terms. This is done, similar to Grassma-
nian case above, with the help of the BC order parameter
(39). The equation (45) is equivalent to:

a(x)Q(x+madj) + e2πit d(x)Q(x−madj) = t(x)Q(x)
(46)

where:

a(x) =
L

∏
a=1

(x+mf
a) , d(x) =

L

∏
a=1

(x−mf̄
a) (47)

and t(x) is an unknown polynomial of degree L.

Three dimensions. If we take the analogous theory
in three dimensions, compactified on a radius R circle,
the resulting vacuum equations would look like:

L

∏
a=1

sinh
(
πR

(
σi +mf

a
))

sinh
(
πR

(
σi−mf̄

a
)) =

=−e2πit
N

∏
j=1

sinh
(
πR

(
σi−σ j−madj

))

sinh(πR(σi−σ j +madj))
(48)

Notice the invariance of the eqs. (48) under the transfor-
mations:

σi −→ σi +
ini

R
, ni ∈ Z (49)

and the permutations of σi’s. This invariance is the affine
Weyl group symmetry, the residual gauge invariance,
whose origin is the gauge transformations of the form:

g(y) = diag
(

ein1y, . . . ,einN y )
.

The equations (48) can be also analyzed in the gauge in-
variant fashion using the BC operator. The order param-
eters of the three dimensional theory compactified on the
circle S1 are contained in the trigonometric polynomial
(cf. [24]):

Q(x) = 2NeπRNŷ
N

∏
i=1

sinh(πR(ŷ−σi)) =

= xN +u1xN−1 + . . .+uN , (50)

where
x = exp(2πRŷ) (51)

The equations (48) are equivalent to the difference equa-
tion:

a(x)Q(xq̂)+qd(x)Q(xq̂−1) = t(x)Q(x) (52)

where q = e2πit ,

q̂ = e2πRmadj
,

a(x) =
L

∏
a=1

(xeπRmf
a − e−πRmf

a) ,

d(x) =
L

∏
a=1

(xe−πRmf̄
a − e+πRmf̄

a)

(53)

and t(x) is a polynomial to be determined.
In the limit R→ 0 with all other parameters kept finite

we recover the two dimensional story.

Four dimensions. The four dimensional gauge the-
ory with the similar field content, compactified on a two-
torus with the modular parameter τ , will lead to the el-
liptic generalization of (48):

L

∏
a=1

Θ1
(
πR

(
σi +mf

a
))

Θ1
(
πR

(
σi−mf̄

a
)) =

=−e2πit
N

∏
j=1

Θ1
(
πR

(
σi−σ j−madj

))

Θ1 (πR(σi−σ j +madj))
(54)

where (in this section q denotes exp(2πiτ)):

Θ1(ξ ) =−iq
1
8

(
eξ − e−ξ

)
×

×
∞

∏
m=1

(1−qm)
(

1−qme2ξ
)(

1−qme−2ξ
)

(55)

The gauge invariance of the equations (54) is more sub-
tle then that of its three and two dimensional counter-
parts.We have the gauge transformations of the form:

g(y,z) = diag
(
ein1y−im1z, . . . ,einN y−imN z) , ni,mi ∈ Z

(56)
which act on σ as follows:

σi 7→ σi +
i
R

(ni +miτ) (57)

The shifts by ni’s are clearly a symmetry of (54). The
shifts by mi’s are more subtle. It turns out that to main-
tain the invariance of (54) under these shifts one has to
assume that

∑
a

(
mf

a +mf̄
a

)
=−Nmadj

and that t transforms under the U(1) subgroup of the
U(N) gauge transformations. The physics of this phe-
nomenon is rather deep, as it involves the chiral anoma-
lies of the charged fermions in four dimensions.
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SPIN CHAINS AND BETHE ANSATZ

In this section we give a swift review of the integrable
spin chains at the example of the XXX spin chain for
SU(2). We also briefly mention other models like XXZ,
XY Z, spin chains with other groups, various boundary
conditions, various limits, such as the one-dimensional
Bose gaz, the one-dimensional Hubbard model, etc. The
so-called Yang-Yang (YY) function Y (λ ) plays the cen-
tral rôle in our discussion. Its critical points are the solu-
tions of Bethe equations. These equations determine the
spectrum of integrable hamiltonians. That the equations
determining the spectrum have a potential is a highly
non-trivial consequence of the rich algebraic structure
behind these systems. It is also the cornerstone of our
correspondence with the gauge theories.

XXX spin chain

The Heisenberg spin chain, also known as the SU(2)
XXX spin chain, is defined on the one dimensional length
L lattice. At each lattice point one has the spin s = 1

2
representation of SU(2), and the Hilbert space of the
system is the tensor product HL = C2⊗C2⊗ . . .⊗C2.
The Hamiltonian HHeis acts in HL. It is written in terms
of generators ~Sa = i

2~σa where a denotes the position on
the lattice, the of spin s = 1

2 representation of SU(2) and
has the nearest-neighbor interaction form:

HHeis = J
L

∑
a=1

(Sx
aSx

a+1 +Sy
aSy

a+1 +Sz
aSz

a+1) (58)

The boundary conditions are quasi-periodic:

~SL+1 = e
i
2 ϑσ3~S1e−

i
2 ϑσ3 . (59)

In other words we identify HL with the subspace H ϑ
L ⊂(

C2
)⊗∞, characterized by (59). One can also consider

the spin chains defined on an open interval. For the
ferromagnet J > 0 and for the anti-ferromagnet - J < 0.

The total spin, ~S = ∑L
a=1

~Sa commutes with HHeis for
ϑ = 0. The spin projection on the third axis, Sz, is a con-
served quantity for any ϑ . The corresponding subspace
of the Hilbert space, H N

L ⊂HL, where Sz = N− 1
2 L, is

sometimes called the N-particle sector.
We study the N-particle eigenstates of HHeis. The

states in H N
L are the linear combinations of the states

with N spins up and L−N spins down. Clearly, the max-
imal number of spins up or down is L, so |Sz| ≤ L

2 , and
N ≤ L. The N-particle state |Ψ〉 can be expanded as:

|Ψ〉= ∑
1≤x1<...<xN≤L

Ψ(x) |x1, . . . ,xN〉 (60)

with |x1, . . . ,xN〉 denoting the state in above tensor
product with spins up at the positions x1, . . . ,xN :
|x1, . . . ,xN〉 = S+

x1
. . .S+

xN
Ω, where Ω = |↓↓ . . .↓〉 is the

(pseudo)vacuum, the state with all spins down. It is anni-
hilated by all operators S−x , S−x Ω = 0. The total number
of the N-particle eigenstates of the Hamiltonian HHeis

is
(

L
N

)
, as they can be enumerated by the appropriate

functions Ψ(x).

The coordinate Bethe ansatz

In 1931 H. Bethe parameterized [38] these functions
by the N quasimomentum variables p = (p1, . . . , pN) ,
subject to the further equations which we write momen-
tarily. The ansatz, known as Bethe ansatz, reads as fol-
lows: let

Ψp(x1, ...xN) =

∑
w∈SN

(−1)wA(pw(1), .., pw(N))exp

(
N

∑
j=1

ipw( j)x j

)
,

(61)

then the eigenstate of HHeis is given by |Ψp >=
∑1≤x1<...<xN≤L Ψp(x)|x1, ...,xN〉. The Bethe ansatz ex-
presses the coefficients Ap(x) in terms of the two body
S-matrix Σ(p1, p2):

A(p1, ..., pN) = ∏
1≤ j≤k≤N

Σ(p j, pk),

Σ(p j, pk) = 1−2eipk + ei(p j+pk).

It is more convenient to use the new variables λ j instead
of p j:

eip j =
λ j + i

2

λ j− i
2

.

In this notation Ψλ (x) of (60) is an eigenstate of the HHeis
if and only if (λ1, ...,λN) satisfy the Bethe equation:

(
λ j + i

2

λ j− i
2

)L

= eiϑ ∏
k 6= j

λ j−λk + i
λ j−λk− i

(62)

which guarantees that (61) obeys the twisted bound-
ary conditions (59). The energy of the state (60) is
HHeisΨp = EpΨp , Ep = J

(
L−2N +2∑N

i=1 cos(pi)
)

.
A similar construction works for an arbitrary spin,

when ~Sa is in the spin sa representation of SU(2) at
every site of a chain. In addition, the spin sites can be,
in some sense, displaced from the symmetric round-
the-clock configuration, so that one gets L additional
parameters ν1, . . . ,νL. This model is sometimes called
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the inhomogeneous XXXs magnet. The corresponding
Bethe equations have the form:

L

∏
a=1

λ j−νa + isa

λ j−νa− isa
= eiϑ ∏

k 6= j

λ j−λk + i
λ j−λk− i

(63)

The Hamiltonian for the general local spins is given by
a polynomial in the neighboring spins, which is more
complicated then (58), see [19] for details.

The analytic Bethe Ansatz

There is yet another interpretation of the Bethe equa-
tions (63), due to [39, 40, 41, 42, 43, 44]. It can be inter-
preted simply as the condition for the polynomial func-
tion

Q(λ ) =
N

∏
i=1

(λ −λi) (64)

to solve Baxter’s equation

a(λ )Q(λ + i)+ eiϑ d(λ )Q(λ − i) = t(λ )Q(λ ) (65)

with the given polynomials:

a(λ ) =
L

∏
a=1

(λ −νa− isau) , d(λ ) =
L

∏
a=1

(λ −νa + isau)

(66)
and some unknown degree L polynomial t(λ ).

Indeed, let us define t(λ ) as the ratio of the left hand
side of (65) and Q(λ ). The absence of poles of t(λ ) at the
zeroes of Q(λ ), i.e. at λ = λ j, j = 1, . . . ,N is equivalent
to (63).

The polynomial t(λ ) gives the eigenvalues of the
twisted transfer matrix

Tϑ (λ ) = A(λ )+ eiϑ D(λ ) (67)

which a central object in algebraic Bethe Ansatz where it
is a trace of monodromy matrix, see [19] for details.

Yang-Yang function

The highly surprising property of the equations
(62),(63) is that they have a potential. If we rewrite (63)
as e2πiϖ j(λ ) = 1, then the following one-form:

ϖ =
N

∑
j=1

ϖ j(λ )dλ j (68)

is closed, dϖ = 0 and ϖ = dY

Y (λ ) =
L

∑
a=1

sa

π

N

∑
j=1

x̂
(

λ j−νa

sa

)
+

+
1
π

N

∑
j,k=1

x̂(λ j−λk)+
N

∑
j=1

λ j

(
n j +

ϑ
2π

)
(69)

where the integers n j label various branches of the loga-
rithms, and the function x̂(λ ) is given by:

x̂(λ ) = λ arctan
(

1
λ

)
+

1
2

log
(
1+λ 2) . (70)

Higher rank spin groups

Now imagine the spin operators~Sa are realized as the
generators of some simple Lie algebra k = LieK. Let
r = rank(k). The number of spin sites L and the excita-
tion level N of our previous models generalize to the vec-
tors:~L = (L1,L2, . . . ,Lr) ,~N = (N1,N2, . . . ,Nr). The twist
parameter becomes the r-tuple of angles: (ϑ1, . . . ,ϑr),
which define the element of the maximal torus of K. The
Bethe equations read as follows:

Li

∏
a=1

λ (i)
j −ν(i)

a + is(i)
a u

λ (i)
j −ν(i)

a − is(i)
a u

=

= eiϑi
r

∏
j=1

∏
j:(i,i)6=( j,j)

λ (i)
i −λ (j)

j + iCiju/2

λ (i)
i −λ (j)

j − iCiju/2
(71)

where the unknowns (Bethe roots) are λ (i)
i , i = 1, . . . ,r,

i = 1, . . . ,Ni. The equations (71) describe the spectrum of
the transfer matrix acting in the space

H~L =
r⊗

i=1

⊗Li
a=1 W

(i)
s(i)a

(
ν(i)

a

)

where W
(i)

s (ν), 2s ∈ Z≥0,ν ∈ C are the so-called
Kirillov-Reshetikhin modules, the special evaluation rep-
resentations of the Yangian Y (k) of k. The matrix Cij in
(71) is the Cartan matrix of k.

The equations (71) also have a YY function, see [19]
for details. The most general closed spin chains corre-
spond to yet more general representations of the Yan-
gian Y (k), not necessarily the Kirillov-Reshetikhin ones.
These representations W~P are characterized by the high-
est weights, which are given by an r-tuple ~P of monic
polynomials, called Drinfeld polynomials:

~P = (P1(λ ),P2(λ ), . . . ,Pr(λ )) (72)

For example, in the case of k = sl2, the inhomogeneous
spin chains were characterized by the polynomials a(λ )
and d(λ ). These polynomials enter Baxter’s equations
(65). These two polynomials can be related to the single
Drinfeld polynomial P1(λ ), as it should be, since the rank
of sl2 is equal to one:

a(λ )
d(λ )

=
P1(λ + 1

2 )
P1(λ − 1

2 )
(73)
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Explicitly (ŝa = sa− 1
2 ):

P1(λ ) =
L

∏
a=1

ŝa

∏
ma=−ŝa

(λ −νa + ima) (74)

In the general case the Bethe roots again form r groups(
λ (i)

i

)
, i = 1, . . . ,r, i = 1, . . . ,Ni. The general Bethe

equations can be written for the simply-laced k, for each
(i, i), as:

Pi(λ
(i)
i + i

2 )

Pi(λ
(i)
i − i

2 )
= eiϑi

r

∏
j=1

Nj

∏
j=1

λ (i)
i −λ (j)

j + i
2Cij

λ (i)
i −λ (j)

j − i
2Cij

(75)

There exists also the generalizations to the non-simply
laced k, and some partial results for the affine case as
well, see [19] for details and references.

The equations (75) can be also written in the form
of Baxter-like equations for r polynomial functions
Qi(λ ) = ∏Ni

i=1(λ − λ (i)
i ), either directly using (75), see

[19], or using the theory of q-characters [45], or, for
k = su(r+1), using the discrete Hirota equations [46].

Anisotropic chains

The model with the (58) Hamiltonian can be general-
ized to the anisotropic situations:

HHeis =
L

∑
a=1

(JxSx
aSx

a+1 + JySy
aSy

a+1 + JzSz
aSz

a+1) (76)

with the general anisotropy parameters Jx,Jy,Jz. These
more general spin chains (the XXZ, XY Z, or the 8-vertex
model [47]) also admit the Bethe ansatz, with the Bethe
equations (63) replaced by the trigonometric or elliptic
analogues.

THE DICTIONARY

In this section we present the explicit bridge between the
two topics of our story, the dictionary, relating the quan-
tum integrable spin chains and the N = (2,2) supersym-
metric gauge theories in two dimensions.

We do it here at the example of the inhomogeneous
twisted XXXs spin chain and a certain U(N) gauge theory
in two dimensions. This map extends to other examples
presented above and more, see [19] for details.

The foundation of our dictionary is of course the ob-
servation that the vacuum equation for the gauge theory
(1) coincides with Bethe equation in the integrable theory
(which we formulate in some generality in (63), (75)):

The effective twisted superpotential
corresponds to the YY function

Actually, the entries of the YY function are dimen-
sionless, while the vacuum equation (1) is written for σ ,
which has the dimension of mass. The precise relation
reads as follows:

uY (λu) = W̃ eff(σ)
λi u = σi

(77)

where u is the particular twisted mass, corresponding to
the U(1) symmetry breaking the N = 4 supersymmetry
of the theory we present below, down to N = 2.

Of course this is only a starting point leading to precise
identification of two theories – the vacuum structure,
including the vacuum expectation values of the (twisted)
chiral operators on the gauge theory side and the entire
spectrum of all integrable Hamiltonians on the spin chain
side. The Baxter operator(s) Qi(λ ) are identified, up to
the rescaling λ → x = λu, Qi(λ )→ u−Ni Qi(x), with the
BC order parameters of the gauge theory.

The Q̃ΦQ theory vs the XXXs spin chain

Our announced duality maps the inhomogeneous
XXXs spin chain to the U(N) gauge theory with the fol-
lowing matter fields and twisted masses:

Gauge
representation

Matter
multiplets

Twisted
mass

adjoint Φ madj =−iu

N Qa mf
a =−µa + isau

N̄ Q̃a mf̄
a = µa + isau

a = 1, . . . ,L

(78)

In the absence of superpotential all the parameters are
complex numbers, µa,sa,u ∈ C. The generic superpo-
tential (17) breaks the global symmetry group U(L)×
U(L)×U(1) down to the subgroup U(1) of the trans-
formations Qa 7→ eiµaQa, Q̃a 7→ e−iµaQ̃a. However, if
the matrix-valued function mb

a(Φ) is chosen in a special
way, the unbroken subgroup gets enhanced. In particular,
when

mb
a(Φ) = δ b

a ϖa Φ2sa , (79)

for a,b = 1, . . . ,L, for some complex constants ϖa, we
have the group U(1)L ×U(1) of the transformations of
the form:

Qa 7→ eiµa−isauQa , Q̃a 7→ e−iµa−isauQ̃a ,Φ 7→ eiuΦ (80)
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In this case we turn on, in addition to the superpotential:

WQ̃ΦQ =
L

∑
a=1

ϖa Q̃aΦ2sa Qa (81)

the twisted masses (78) with the non-negative integer
2sa, in order for the superpotential (17) to be a polyno-
mial. Note that the N = 2, d = 4 theory has a super-
potential given by: W0 = ∑L

a=1 Q̃aΦQa (in the massless
case) and corresponds to sa = 1

2 .
A few comments about the superpotential (17) are in

order. In two dimensions the corresponding theory is
renormalizable for all half-integer values of s. In three
dimensions only for s = 1

2 or s = 1 we get renormalizable
theory, and in four dimensions - only for s = 1

2 . One has
several approaches to the three and four dimensional the-
ories for the values of s when the superpotentials Q̃Φ2sQ
are not renormalizable: 1.〉 Think about these theories as
effective theories arising from a renormalizable funda-
mental theory after integrating out some massive modes;
2.〉 View them as the theories with cutoff; 3.〉 Embed
them into string theory, or 4.〉 Abandon them for such
values of s altogether. Obviously we do not like to pur-
sue the last option. We describe the details of 1.〉 in [19].

Thus, the Q̃ΦQ theory with the superpotential (81)
and the twisted masses (78) with the half-integers sa
is mapped to the N-particle sector of the twisted inho-
mogeneous SU(2) XXXs spin chain. The supersym-
metric vacua correspond to Bethe states. The twisted
masses correspond to the inhomogeneities and the lo-
cal spins. The Fayet-Illiopoulos term combined with
the theta angle map to the complexified twist param-
eter of the spin chain.

Indeed, since the gauge group U(N) has a center,
one has an additional parameter, the complexified theta
angle, which is the sum of the theta angle and the Fayet-
Illiopoulos term:

t =
1

2π
ϑ + ir (82)

This parameter is mapped to the twist parameter of the
(complexified) spin chain:

t =
1

2π
ϑ + ir −→ ~Sa+L = e−πitσ3~Saeπitσ3 (83)

Note that the sole rôle of the superpotential W (81) is
to impose the integrality condition on the sa parameters
of the twisted masses (78). It is conceivable that in the
absence of W the theory with complex sa’s maps to the
sl2 spin chain with possibly infinite dimensional spin
representations (still in the N-particle sector).

Order parameters, Hamiltonians, local
operators

Let us discuss the rôle of the BC order parameter and
Baxter’s equation in the gauge theory. Define the gauge
theory observable, which we shall call the T -operator (cf.
(46)):

T(x) = a(x)
Q(x+madj)

Q(x)
+ e2πit d(x)

Q(x−madj)
Q(x)

(84)

with a(x),d(x) from (47). The T -operator is an infinite
expansion in x, whose coefficients are the gauge invariant
functions of σ . In a sense, we can view t(x) as the
generating function of the twisted chiral ring operators.
Now, the twisted chiral ring is a commutative associative
ring [19] generated by the coefficients of Q(x), and the
relations which can be concisely formulated as:

T(x)− ≡
∞

∑
n=1

Tnx−n = {Q, . . .} (85)

where Q is one of the supercharges of the theory. In other
words, in the twisted chiral ring the following equations
hold:

Tn = 0 , n = 1,2, . . . (86)

It would be nice to derive this from some Ward identities,
analogous to the generalized Konishi anomaly [48]. In
the spin chain the positive coefficients of the expansion
of t(x) correspond to the integrable Hamiltonians Hk of
the model:

T(x)+ = (1+ e2πit)xL +
L

∑
a=1

Hn−1xn−1 (87)

Finally, the gauge theory has non-local operators, creat-
ing soliton states, interpolating between different vacua
of the theory. It is natural to identify those with local op-
erators in the spin chain, such as the operator of the local
spin~Sa.

LIFTS TO HIGHER DIMENSIONS

Our two dimensional theories can be lifted to three and
four dimensions while keeping the same amount of su-
persymmetry. The three dimensional theory compactified
on a circle would map to the XXZ spin chain (cf. (48)
with (78)), the four dimensional theory compactified on
T2 (cf. (54) ) maps to the 8-vertex model and the XY Z
spin chain.
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From four dimensional N = 2 susy to the
two dimensional N = 2 susy

There is, however, another four-dimensional construc-
tion which leads to an interesting deformation of the
would-be-Bethe equations, which are the vacuum equa-
tions of the compactified four-dimensional supersym-
metric gauge theory. We start with the N = 2 supersym-
metric gauge theory in four dimensions and compactify
it on a two-dimensional sphere S2. Of course, this com-
pactification breaks supersymmetry, so we shall have to
make a partial twist along S2 to preserve some fraction
of the supersymmetry.

This theory is interesting as the low-energy two di-
mensional dynamics is sensitive to the effects of the four
dimensional instantons. The equations (34) then contain
the complexified four-dimensional coupling

T =
θ
2π

+
4πi
e2 (88)

and, for the appropriate four dimensional theory, are
modular.

The partial twist is done as follows (cf. [49]). The
holonomy group of the product manifold Σ×S2 with the
product metric is SO(2)Σ×SO(2)S2 . Here Σ is the world-
sheet of the effective two dimensional theory. In addition,
the N = 2 theory has an SU(2) R-symmetry group (it
can be larger for the theories with matter). The super-
charges of the N = 2 theory, eight of them, transform
as

(± 1
2 ,± 1

2 ,2
)

under SO(2)Σ×SO(2)S2 ×SU(2). Since
the two-sphere has no covariantly constant spinors, none
of these supercharges are conserved, if the R-symmetry
group is to be preserved. Now imagine SO(2)S2 is al-
lowed to act on the R-symmetry index. In other words,
let us embed SO(2)S2 → SU(2), via

eiα 7→
(

eiqα 0
0 e−iqα

)
, 2q ∈ Z (89)

The eight supercharges now transform as:
(± 1

2 ,± 1
2 ±q

)

under SO(2)Σ× SO(2)S2 . We now can choose q = ± 1
2 ,

to make four supercharges have vanishing charge un-
der SO(2)S2 . The other four supercharges transform as:(± 1

2 ,±1
)

and are not conserved on the two-sphere S2.

Pure N = 2 theory

As a warmup, consider the compactification of the
pure N = 2 super-Yang-Mills theory on S2 with the
q =± 1

2 twist.
The result is the two dimensional theory, with the

N = 2 supersymmetry in two dimensions. The field con-
tent of that theory contains a massless vector multiplet

and a Kaluza-Klein tower of massive vector and chiral
multiplets, all transforming in the adjoint representation
of the gauge group. The lowest massive level comes from
the Laplacian eigenstates in the space of the one-forms
on S2.

Now we wish to calculate the effective twisted super-
potential of the two dimensional theory. We shall take the
size of S2 to zero. In this way the massive states become
infinitely massive and ought to decouple.

Now let us turn on the magnetic flux on the two-
sphere. More precisely, we can turn on the flux, for
G = U(N),

1
2πi

∫

S2
F ∼ diag(m1, . . . ,mN) , mi ∈ Z

in the maximal torus of the gauge group, determined by
the vacuum expectation value of the adjoint Higgs field.
In the presence of the magnetic flux, some of the charged
Kaluza-Klein modes become massless and contribute
to the effective twisted superpotential. As a result, the
twisted superpotential can be expressed in terms of the
prepotential of the four dimensional theory as follows:

W (a) =
r

∑
i=1

mi
∂F

∂ai (90)

where r = N for G = U(N), r = N− 1 for G = SU(N)
(in the latter case there is one more subtlety related to the
possibility to turn on the discrete magnetic flux w2 ∈ZN).
In addition, the unfolding of the two dimensional field
strength can be accomplished, as in (33), by introducing
the integral vector (n1, . . . ,nr), which can be identified
with the vector or electric fluxes through the two-sphere.
The twisted superpotential becomes [37]:

W (a) =
r

∑
i=1

(
mi

∂F

∂ai +niai
)

=
∮

Cm,n
λ (91)

where λ = pdz is the Seiberg-Witten differential, and
Cm,n ∈ H1(C ,Z) is a cycle on the Seiberg-Witten curve
C ,

ΛN (
ep + e−p) = zN +u1zN−1 + . . .+uN , (92)

corresponding to the charges (m,n).

The N = 2∗ theory

Now, to make things interesting let us add some mat-
ter fields. One of the most beautiful gauge theories in
four dimensions is the so-called N = 2∗ theory. This is
the N = 2 theory with massive adjoint hypermultiplet.
In the ultraviolet this is the N = 4 theory, which ex-
hibits S-duality. In the infrared this is the Abelian theory
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with the moduli space of vacua described by the alge-
braic integrable system [13], an elliptic Calogero-Moser
system, which can also be described [5, 14] as a degener-
ate case of the Hitchin system [2]. The classical elliptic
Calogero-Moser system describes the system of particles
q1,q2, . . . ,qN on a circle, interacting via a pair-wise po-
tential

U = m2
N

∑
i, j=1

℘(qi−q j)

which is doubly periodic, with the periods 1 and T ,
ImT > 0, where we use the elliptic modulus defined by
the gauge couplings (88). The classical motion of that
system is mapped to the constant velocity motion on the
Jacobian variety of the spectral curve,

detN×N (Φ(z)−λ ) = 0 (93)

where

Φi j(z) = piδi j +m
ϑ1(z+qi−q j)ϑ ′

1(0)
ϑ1(z)ϑ1(qi−q j)

(1−δi j) (94)

This family of curves encodes [50, 51] the low-energy ef-
fective action of the N = 2∗ theory with the mass of the
hypermultiplet equal to m. The prepotential F depends
on the vacuum expectation values 〈φ〉= diag(a1, . . . ,aN)
of the scalars in the vector multiplet of the U(N) gauge
group, and on m and τ:

F (a;m,T ) = F pert(a;m,T )+
∞

∑
k=1

e2NkπiT Fk(a;m) ,

(95)
where

F pert(a;m,T ) =
T

2

N

∑
i=1

a2
i +

+
1
4 ∑

i 6= j

[
(ai−a j)

2
(

log(ai−a j)− 3
2

)
−

−(ai−a j +m)2
(

log(ai−a j +m)− 3
2

)]
(96)

The terms Fk(a;m) come from the charge k instantons
and can be computed for any k using localization tech-
niques [50]:

F1(a;m) = m2
N

∑
i=1

∏
j 6=i

(
1− m2

(ai−a j)2

)
, etc. (97)

Now let us apply the same procedure to the N = 2∗
theory, i.e. let us compactify the theory on a two-sphere
with the partial twist. Actually, the theory with adjoint
hypermultiplet can be twisted in many ways. Indeed, we
have an extra U(1) symmetry under which the complex

scalars B1,B2 in the adjoint hypermultiplet have charges
+1,−1. By embedding SO(2)S2 into this U(1) we shall
assign the additional Lorentz spins to the bosons and
fermions in the hypermultiplet.

The two dimensional twisted superpotential now con-
tains, in addition to the terms (91), the terms coming
from the extra twist of the matter fields (we identify
ai = σi):

W̃ eff(σ ;m,T ) = 2
∂F (σ ;m,T )

∂m
+

+
r

∑
i=1

(
mi

∂F (σ ;m,T )
∂σi

+niσ i
)

(98)

and vacuum equation is defined with this and (1). We
note that the perturbative limit of the (98) gives the
twisted effective superpotential of the Yang-Mills-Higgs
theory of [1, 3, 4] (the example (44) of the Hitchin the-
ory above). This is not surprising since in the trivial in-
stanton sector the reduction on S2 of the four dimen-
sional N = 2∗ theory gives the two dimensional N = 2∗
theory. We see here that the four dimensional instation
corrections give a modular deformation of the effective
twisted superpotential, and accordingly the Bethe equa-
tions. This is a very interesting phenomenon which needs
further investigation, see [19] for details.
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