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Abstract. An analytic theory of electron transport in disordered graphene in a ballistic geometry is developed. We consider
a sample of a large width W and analyze the evolution of the conductance, the shot noise, and the full statistics of the charge
transfer with increasing length L, both at the Dirac point and at a finite gate voltage. The transfer matrix approach combined
with the disorder perturbation theory and the renormalization group is used. We also discuss the crossover to the diffusive
regime and construct a “phase diagram” of various transport regimes in graphene.
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1. INTRODUCTION

Recent successes in manufacturing of atomically thin
graphite samples [1, 2, 3, 4] (graphene) have stimulated
intense experimental and theoretical activity [5, 6]. The
key feature of graphene is the massless Dirac type of low-
energy electron excitations. This gives rise to a number
of remarkable physical properties of this system distin-
guishing it from conventional two-dimensional metals.
One of the most prominent features of graphene is the
“minimal conductivity” at the neutrality (Dirac) point.
Specifically, the conductivity [3, 4, 7] of an undoped
sample is close to e2/h per spin per valley, remaining al-
most constant in a very broad temperature range — from
room temperature down to 30mK.

A number of numerical simulations of electron trans-
port in disordered graphene [8, 9, 10, 11, 12, 13, 14]
confirmed the absence of localization in the presence of
long-range random potential. The main quantity studied
numerically in most of these works is the conductance
G of a finite-size graphene sample with a width W much
larger than the length L. This setup allows one to define
the “conductivity” σ ≡ GL/W even for ballistic samples
with L much shorter than the mean free path l. Remark-
ably, in graphene at the Dirac point, such ballistic “con-
ductivity” has a universal value e2/πh in the clean case
[15, 16]. This setup was studied experimentally in Refs.
[17, 18, 19, 20] and the ballistic value e2/πh was indeed
observed for large aspect ratios. This geometry of sam-
ples is particularly advantageous for the analysis of evo-
lution from the ballistic to diffusive transport.

A complete description of the electron transport
through a finite system involves not only the conduc-
tance but also higher cumulants of the distribution of
transferred charge. The second moment is related to the

current noise in the system. The intensity of the shot
noise is characterized by the Fano factor F . For clean
graphene, this quantity was studied in Ref. [16]. Surpris-
ingly, in a short and wide sample (W ÀL) the Fano factor
takes the universal value F = 1/3, that coincides with the
well-known result for a diffusive metallic wire [21]. This
is at odds with usual clean metallic systems, where the
shot noise is absent (F = 0). The Fano factor F = 1/3
in clean graphene is attributed [16] to the fact that the
current is mediated by evanescent rather than propagat-
ing modes. Furthermore, the whole distribution of trans-
mission eigenvalues for the massless Dirac equation in a
clean sample at the Dirac point agrees with that of meso-
scopic metallic wires in the diffusive regime [22].

The effect of disorder on the shot noise was studied nu-
merically in Refs. [12, 13], where the value of the Fano
factor F ≈ 0.3 was found across the whole crossover
form ballistics to diffusion. The Fano factor close to
1/3 was also observed at the Dirac point experimen-
tally [19, 20]. When the chemical potential was shifted
away from the Dirac point, the Fano factor decreased,
then showed an intermediate shoulder at F ≈ 0.15, and
finally approached zero for largest gate voltages (carrier
concentrations).

While both diffusive and clean limits have been ad-
dressed analytically, only numerical and experimental re-
sults for the intermediate regime of ballistic transport
through disordered samples have been available so far
[23]. The aim of this paper is to fill this gap. We de-
velop the analytic theory of electron transport in disor-
dered graphene in the ballistic geometry (L ¿W, l) and
calculate the full statistics of the charge transfer for both
zero (the Dirac point) and large concentration of carri-
ers. We also discuss the crossover to diffusive regime
and construct the overall “phase diagram” of transport



regimes.
A number of experimental results show that the dom-

inant disorder in graphene scatters electrons within the
same valley. First, this disorder model is supported by the
odd-integer quantization [3, 4, 5] of the Hall conductiv-
ity, σxy = (2n + 1)2e2/h, representing a direct evidence
[24] in favor of smooth disorder which does not mix
the valleys. The analysis of weak localization also cor-
roborates the dominance of intra-valley scattering [25].
Furthermore, the observation of the linear density de-
pendence [5] of graphene conductivity away from the
Dirac point implies that the relevant disorder is due to
charged impurities and/or ripples [8, 26, 27, 28, 29], that
is a particular type of long-range disorder. Finally, ap-
parent absence of localization at the Dirac point down to
very low temperatures [3, 4, 7] can be explained only by
some special symmetry of disorder. In particular, a lack
of valley mixing leads to emergence of a topological term
in the corresponding field theory (unitary or symplectic
σ -model) [30]. The peculiar topological properties pro-
tect the system from localization [30, 31, 24, 32, 11]. It is
worth mentioning that a topologically protected metallic
state emerging in graphene with long-range random po-
tential also arises at a surface of a three-dimensional Z2
topological insulator [33, 34].

Motivated by the experimental observations, we will
adopt the single-valley model of graphene. More specif-
ically, we will consider potential disorder that scatters
within a single valley and neglect intervalley scattering
events. A more general study allowing for other intraval-
ley scattering mechanisms (random vector potential and
random Dirac mass) can be found in Ref. [35].

2. TRANSFER-MATRIX TECHNIQUE

We start with introducing our model and the general
formalism of transfer matrix technique. For graphene,
this approach was employed in Refs. [15, 16, 36, 37, 38,
12].

The single-valley massless Dirac Hamiltonian of elec-
trons in graphene has the form (see, e.g., Ref. [6])

H = v0σσσp+V (x,y). (1)

Here σσσ ≡{σx,σy} is the two-dimensional vector of Pauli
matrices acting on the electron pseudospin degree of
freedom corresponding to the sublattice structure of the
honeycomb lattice and the Fermi velocity is v0 ≈ 108

cm/s. The random part V (x,y) is in general a 2×2 matrix
in the sublattice space. We will consider only the case of
potential disorder, when the operator V (x,y) is trivial in
the pseudospin space. For a more general case see Ref.
[35]. Below we set h̄ = 1 and v0 = 1 for convenience.

We will calculate transport properties of a rectangular
graphene sample with the dimensions L×W . The con-
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FIGURE 1. Schematic setup for two-terminal transport mea-
surements. Graphene sample of dimensions L×W is placed
between two parallel contacts. We assume W À L throughout
the paper.

tacts are attached to the two sides of the width W sepa-
rated by the distance L. We fix the x axis in the direction
of current, Fig. 1, with the contacts placed at x = 0 and
x = L. We assume W À L, which allows us to neglect the
boundary effects related to the edges of the sample that
are parallel to the x axis (at y =±W/2).

Following Ref. [16], metallic contacts are modelled as
highly doped graphene regions described by the same
Hamiltonian (1). In other words, we assume that the
chemical potential EF in the contacts is shifted far from
the Dirac point. In particular, EF À ε , where ε is the
chemical potential inside the graphene sample counted
from the Dirac point. (All our results are independent
of the sign of energy, thus we assume ε > 0 throughout
the paper.) A large number of propagating modes exists
in the leads, all belonging to the circular Fermi surface
of radius pF = EF/v0. These modes are labelled by the
momentum pn = 2πn/W in y direction with |n| < N =
W pF/2π . Particular boundary conditions at y = ±W/2
shift the quantized values of pn by a constant of order
1/W . However, this constant has no significance in the
limit W À L when many channels participate in electron
transport.

We will use the mixed momentum-coordinate repre-
sentation, with the wave function Ψn(x) bearing a vec-
tor index n in the space of transverse momenta sup-
plemented by a 2-spinor structure in pseudospin (sub-
lattice) space. The eigenstates of the clean Hamiltonian
H0 = v0σσσp have the direction of pseudospin parallel to
the electron momentum. It is convenient to perform the
unitary rotation [38] in the pseudospin space ψ = L Ψ
with L = (σx + σz)/

√
2 which transforms σx to the

diagonal form: L σxL † = σz. Hence the two compo-
nents of the rotated spinor correspond to right- and left-
propagating waves, ψ = {ψR,ψL}. In terms of the new
function ψn(x), the Schrödinger equation HΨ = εΨ ac-
quires the form [12, 38]

∂ψn

∂x
= (σx pn + iσzε)ψn− iσz ∑

m
Unm(x)ψm. (2)



The matrix Unm(x) represents the operator V (x,y) in the
mixed momentum-coordinate representation

Unm(x) =
∫ dy

W
e−i(pn−pm)yV (x,y). (3)

A standard description of electron propagation in-
volves the transfer matrix T which relates left- and
right-moving waves at the point x = L to those at x = 0:
(

ψR(L)
ψL(L)

)
= T

(
ψR(0)
ψL(0)

)
, T =

(
t†−1 rt−1

−t−1r t−1

)
.

(4)
The elements t and r are matrices in channel space
formed by transmission and reflection amplitudes re-
spectively. This description is convenient due to the
simple multiplicativity property: T (x3,x2)T (x2,x1) =
T (x3,x1).

By definition, the transfer matrix T (x2,x1) yields
a solution to the Schrödinger equation (2) in the
form ψ(x2) = T (x2,x1)ψ(x1). Transfer matrix it-
self, as a function of its first argument, obeys the
same Schrödinger equation with the initial condition
T (x,x) = 1. In a clean sample the solution depends
only on the difference x2− x1 and is diagonal in channel
space:

T
(0)

nm (x2,x1) = δnm exp
[
(σx pn + iσzε)(x2− x1)

]
. (5)

In order to include disorder as a perturbation, it is
convenient to cast the Schrödinger equation (2) into an
integral form. In terms of transfer matrix the integral
equation reads

T (x2,x1) = T (0)(x2,x1)

− i
∫ x2

x1

dxT (0)(x2,x)σzU(x)T (x,x1). (6)

The transport statistics of the sample is expressed in
terms of transmission eigenvalues Tn — the eigenval-
ues of the matrix t†t. One can extract these transmis-
sion eigenvalues from the upper left element of the trans-
fer matrix (4). The first two moments of the transferred
charge distribution determine the conductance (by Lan-
dauer formula) and the Fano factor [21]

G =
4e2

h
Tr(t†t), F = 1− Tr(t†t)2

Tr(t†t)
. (7)

The factor 4 in the expression for the conductance ac-
counts for the spin and valley degeneracy.

3. CLEAN GRAPHENE

We will first analyze transport properties of a clean
graphene strip. In the “short and wide” geometry (W À
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FIGURE 2. Energy dependence of the (a) conductance and
the (b) Fano factor of the clean sample with W À L. Solid lines
show numerical results. Low energy asymptotics Eq. (12) is
plotted by dashed lines while dotted lines correspond to high
energy limit Eqs. (19) and (20). Asymptotical curves provide a
very good approximation to the exact result in the whole range
of energies.

L) we are considering, the total number of channels par-
ticipating in charge transfer is large. This allows us to
replace summation over channels by integration. From
now on, we will identify channels by the dimensionless
momentum p = pnL in y direction.

The transfer matrix T (0), and hence its upper-left
block t†−1, are diagonal in channels. Using the explicit
form of the clean graphene transfer matrix, Eq. (5), one
calculates the transmission eigenvalues [38]

Tp = (t†t)pp =

[
1+

p2 sinh2
√

p2− (εL)2

p2− (εL)2

]−1

. (8)

For the conductance and Fano factor we obtain from
Eq. (7)

G =
2e2W
πhL

∫
d p Tp, F = 1−

∫
d p T 2

p∫
d p Tp

. (9)

The result of numerical integration of Eq. (9) is shown in
Fig. 2. A detailed analytical analysis of the two limiting
cases of small and large energies is presented below.

3.1. Low energies: εL¿ 1

In the limit of low energies, εL¿ 1, we describe trans-
port properties with the help of a distribution function



P(T ) of transmission eigenvalues (8). This distribution
function provides a measure in the space of channels,

P(T )dT =
W d|p|

πL
. (10)

According to (8), there is one-to-one correspondence
between the transmission eigenvalue 0 ≤ T ≤ 1 and the
absolute value |p| of the momentum; an extra factor of 2
in the right-hand side of Eq. (10) accounts for the double
degeneracy between channels with momenta p and −p.

In the low energy limit, we calculate the distribution
function P(T ) in the form of a power series in the small
parameter εL. In order to perform this calculation, we
invert the function Tp given by Eq. (8) keeping terms of
the second order in εL and then substitute the result into
Eq. (10).

P(T ) =
W

2πL
1

T
√

1−T

×
[

1+(εL)2

( √
1−T

arccosh3 1√
T

− 1+T
2arccosh2 1√

T

)]
.

(11)

At zero energy, the function P(T ) reproduces the well-
known Dorokhov result [39] for a diffusive wire. This
is, in particular, the reason for the 1/3 Fano factor in
graphene [16]. The fact that the clean graphene sample
is characterized by exactly the same form of the trans-
mission distribution as a generic diffusive wire is highly
nontrivial. We will show below (Secs. 4 and 5) that this
remarkable correspondence remains valid in the ballistic
regime when leading disorder effects are incorporated.

Using the distribution (11), we obtain the following
results for the conductance and the Fano factor of clean
graphene at low energies, εL¿ 1,

G =
4e2

πh
W
L

[
1+ c1(εL)2] , F =

1
3

[
1+ c2(εL)2] ,

(12)

c1 =
35ζ (3)

3π2 − 124ζ (5)
π4 ≈ 0.101, (13)

c2 =−28ζ (3)
15π2 − 434ζ (5)

π4 +
4572ζ (7)

π6 ≈−0.052.

(14)

At the Dirac point (ε = 0), Eq. (12) reproduces the
earlier analytical results of Refs. [15, 16]. Low energy
asymptotics is shown with dashed lines in Fig. 2.

3.2. High energies: εLÀ 1

When the Fermi energy ε in the sample is far from
the Dirac point, many conducting (T ∼ 1) channels are

opened. In this regime, the conductivity and higher mo-
ments of the transmission distribution are essentially lin-
ear in ε with small oscillating corrections (see Fig. 2).
These oscillations are due to interference effects: con-
ductance is relatively enhanced and the noise is sup-
pressed when a channel exhibits resonant transmission
with T close to 1. This phenomenon is similar to the
Fabry-Perot resonances.

At high energies, it is convenient to deal with the
generating function of transmission moments defined as

F (z) =
∞

∑
n=1

zn−1 Tr(t†t)n = Tr
[
t−1t†−1− z

]−1
. (15)

In order to calculate F (z), we substitute Eq. (8) into
Eq. (15). The integrand oscillates rapidly in the interval
−εL < p < εL. This interval of momenta contains all
open (well-conducting) channels and thus provides the
main contribution to the generating function. We intro-
duce a new variable u, such that p = εL

√
1−u2. In terms

of this new variable the integral acquires the form

F (z)=
Wε
π

∫ 1

0

udu√
1−u2

[
cos2(uεL)+

sin2(uεL)
u2 − z

]−1

.

(16)
Trigonometric functions in the integrand rapidly oscil-

late. To take advantage of this property, we represent the
integrand as a sum over Fourier harmonics cos(nuεL).
The first and the second terms of such Fourier expansion
are

F (z) =
Wε

π
√

1− z

∫ 1

0

u2 du√
(1−u2)(1− zu2)

[
1

+
2
(
u
√

1− z−
√

1− zu2
)2

1−u2 cos(2uεL)

]
. (17)

The first term of the above expression provides the
main (linear in ε) contribution to the generating function.
It is expressed in terms of complete elliptic integrals.
The second term is suppressed due to oscillations of the
integrand. We estimate its contribution using the saddle-
point method. The result of this calculation reads

F (z) = Wε
[

K(z)−E(z)
πz
√

1− z
+

sin(2εL−π/4)
8
√

π(1− z)2(εL)3/2

]
.

(18)
The conductance and the Fano factor are then calculated
by expanding F (z) in small z, see Eq. (15).

G =
e2

h
Wε

[
1+

sin(2εL−π/4)
2
√

π(εL)3/2

]
, (19)

F =
1
8

[
1− 9sin(2εL−π/4)

2
√

π(εL)3/2

]
. (20)



These results are in a good agreement with the high-
energy behavior of G and F calculated numerically, see
Fig. 2.

Let us emphasize that transport properties of the sys-
tem at high energies depend on the particular model of
the contacts [40, 41]. In our calculation we assume that
the boundaries between graphene and the leads are sharp.
This model is well justified if the actual extension d of
the transitional region at the interface is small compared
to the electron wavelength in graphene. This condition is
violated at very high energy, ε À 1/d, when the bound-
ary becomes adiabatically smooth. This, in particular,
leads to the vanishing Fano factor because the semiclas-
sically propagating electrons are either transmitted or re-
flected without any uncertainty.

Our results for the energy dependence of the con-
ductance and the Fano factor in clean graphene are in
agreement with the findings of Refs. [16, 38], where the
sum over transmission channels was evaluated numeri-
cally for a finite (but sufficiently large) ratio W/L. Ex-
perimentally, such a ballistic setup was studied in Refs.
[19, 20]. Most of the experimental observations reason-
ably agree with our results. The “conductivity” GL/W
(which is equal to 4e2/πh at the neutrality point, as ex-
pected for a ballistic sample) increases roughly linearly
with energy ε . The Fano factor has a value close to 1/3
at the Dirac point and decreases when one moves away
from the Dirac point, showing a tendency to saturate at
F ≈ 0.15, which is not far from the value 1/8 we have ob-
tained in the high-energy regime. Measurements on other
samples reveal that very far from the Dirac point the
Fano factor decreases again, reaching a value as low as
0.02. Apparently, the intermediate plateau corresponds to
the high-energy regime L−1 ¿ ε ¿ d−1 investigated in
our work, while the vanishing of the Fano factor at still
higher electron concentrations corresponds to the ultra-
high-energy range, ε À d−1.

4. INCLUDING DISORDER:
PERTURBATIVE TREATMENT

So far, we have considered the transport properties of a
clean graphene sample. In the present section we include
disorder on the level of the leading perturbative correc-
tion. We assume the Gaussian statistics for the random
potential V (x,y),

〈V (x,y)〉= 0,

〈V (x,y)V (x′,y′)〉= 2παδ (x− x′)δ (y− y′).
(21)

The dimensionless disorder strength α is similar to the
parameter α0 used in Ref. [30].

The Gaussian white-noise disorder (21) is realized
when the scattering is due to impurities in the substrate

separated by a thick (compared to the lattice constant)
clean spacer layer from the graphene plane. The inter-
valley matrix elements of the disorder potential are then
exponentially suppressed and can be safely neglected. A
more realistic case of long-range charged impurities with
1/r potentials can also be treated perturbatively within
the Gaussian model, but with an energy-dependent scat-
tering amplitude [29].

In the present section we will calculate the first disor-
der correction to the transport properties of a graphene
sample. Specifically, we will find a linear-in-α contribu-
tion to the distribution function P(T ) at low energies and
to the generating function F (z) at high energies.

4.1. Low energies: εL¿ 1

We have already calculated the lowest order correction
to the distribution function P(T ) due to small energy [see
Eq. (11)]. Now we are going to find the lowest disorder
correction at exactly zero energy. To the main order,
these two contributions merely add up.

At zero energy, there are no propagating modes in
graphene, all the channels are evanescent. The generating
function F (z) defined by Eq. (15) at ε = 0 simplifies to

F0(z) =
W

2πL

∫ d p
cosh2 p− z

=
W
πL

arcsin
√

z√
z− z2

. (22)

In order to find the lowest disorder correction to the
generating function, we solve the evolution equation (6)
perturbatively up to second order in random potential.
Then we single out the transmission matrix t from T and
substitute it into Eq. (15). After averaging over Gaussian
distribution (21) the correction to the generating function
acquires the form

Fdis(z) =
2αW
πL

arcsin
√

z√
z− z2

. (23)

Remarkably, the disorder correction retains the func-
tional form of F (z) at zero energy changing only the
overall prefactor. We will discuss the consequences of
this fact in Sec. 6. This implies that the transmission
distribution P(T ) also preserves its Dorokhov form. To-
gether with the energy correction from Eq. (11), we find
the following result

P(T ) =
W

2πL
1

T
√

1−T

[
1+2α

+(εL)2

( √
1−T

arccosh3 1√
T

− 1+T
2arccosh2 1√

T

)]
. (24)



4.2. High energies: εLÀ 1

The transport properties of a clean graphene sample
at high energies were considered in Sec. 3.2. The main
contribution to the conductance and to higher moments
is proportional to εL and comes from the band of fully
opened channels with |pn| < ε . Carrying out the same
perturbative calculation as for the zero-energy case, we
get a complicated double integral of a rapidly oscillating
function. After averaging over oscillations, the integral
simplifies and yields the disorder correction to the gen-
erating function

Fdis(z) =−αWLε2 [(1− z)K(z)−E(z)]2

πz2(1− z)
. (25)

Expanding at z = 0, we readily calculate disorder cor-
rections to the conductance and Fano factor. Combining
these corrections with the results for clean sample, Eqs.
(19) and (20), we obtain

G =
e2

h
Wε

[
1+

sin(2εL−π/4)
2
√

π(εL)3/2 − π
4

αεL
]
, (26)

F =
1
8

[
1− 9sin(2εL−π/4)

2
√

π(εL)3/2 +
3π
4

αεL
]
. (27)

We see that at high energies any disorder suppresses
conductance and enhances noise at the level of the lowest
perturbative correction.

At sufficiently high energies, αεL & 1, disorder cor-
rection becomes comparable to the clean result. This im-
plies a crossover to the diffusive regime, where the per-
turbative approach developed in the present section fails,
see Sec. 5.

5. RENORMALIZATION GROUP AND
OVERALL PHASE DIAGRAM

In the previous section we have calculated the lowest
disorder correction to transport properties of a ballistic
graphene sample. In the present section we will discuss
the resummation of higher-order contributions.

The second-order and all higher terms contain log-
arithmic divergences and thus become important when
system is still in the ballistic regime, L¿ l. These loga-
rithms are intrinsic for two-dimensional Dirac fermions
subjected to disorder and were extensively studied in
various contexts using renormalization group technique.
[42, 43, 44, 45, 46, 47] Application of such a renormal-
ization group (RG) to disordered graphene was devel-
oped in Refs. [48, 29].

We will use two-loop perturbative RG for the disorder
strength α and one-loop for the energy ε . Higher terms
in the RG equations are non-universal and depend on

the particular regularization scheme. A comprehensive
derivation of the two-loop RG equations can be found
in, e.g., Ref. [49].

∂α
∂ lnΛ

= 2α2 +2α3,
∂ε

∂ lnΛ
= αε. (28)

Here Λ is the running scale parameter in the real space,
it has the dimension of length. Bare values of energy and
disorder coupling, which are the initial conditions for RG
equations, correspond to the scale of the order of lattice
spacing a. After renormalization procedure, we obtain
renormalized values of the parameters at the scale Λ and
also a new effective bandwidth 1/Λ.

The renormalization proceeds until one of the follow-
ing events happens: (i) the running scale Λ reaches the
system size L, (ii) the disorder coupling becomes of the
order unity, or (iii) the renormalized energy reaches the
bandwidth. We will discuss these three possibilities be-
low. Once the renormalization has been performed, we
can calculate observables by simply applying the pertur-
bation theory. The results of previous section for trans-
port characteristics thus remain applicable with bare pa-
rameters replaced by their renormalized values.

Let us first consider the zero energy limit when the
only parameter of the model is the disorder strength α .
Disorder is enhanced in course of renormalization. The
RG should be stopped when the renormalized value of
α becomes of order of unity, so that the perturbative
expansion of the beta function fails. The corresponding
scale is the zero-energy mean free path

l0 = a
√

αe1/2α . (29)

At scales shorter than the mean free path l0, the renor-
malized value of α is given by

α(Λ) =
1

2ln(l0/Λ)+ ln ln(l0/Λ)
. (30)

As long as L ¿ l0, and thus α(L)¿ 1, we can describe
the transport properties by the distribution function (24)
with the renormalized value α(L) and ε = 0.

A small but non-zero energy does not change the
qualitative behavior of the system, as long as the RG flow
is terminated by the system size. We refer to this situation
as “ultraballistic regime”. The energy gets renormalized
according to Eq. (28),

ε(Λ) =
ε√

α[2ln(l0/Λ)+ ln ln(l0/Λ)]
. (31)

The value ε(L) is to be substituted into Eq. (24) along
with the renormalized value of α(L). This yields the full
description of transport properties for the system in the
ultraballistic regime. In particular, the conductance and



the Fano factor are

G =
4e2

πh
W
L

[
1+

2α + c1(εL)2

α[2ln(l0/L)+ ln ln(l0/L)]

]
, (32)

F =
1
3

[
1+

c2(εL)2

α[2ln(l0/L)+ ln ln(l0/L)]

]
, (33)

with the constants c1,2 given by Eqs. (13) and (14).
When the initial (bare) value of energy is increased,

the renormalized energy eventually becomes comparable
to the effective bandwidth 1/Λ before the running scale
Λ reaches L (and still before the disorder coupling α(Λ)
reaches unity). The length scale at which ε(Λ) = 1/Λ
plays the role of the effective Fermi wavelength λ . (In-
deed, in the absence of disorder, energy is not renormal-
ized and λ = 1/ε .) Using Eq. (31), we find

λ =
1
ε
√

2α ln(ε/γ), (34)

where γ is the characteristic disorder-induced energy
scale

γ =
√

α/l0 = ∆e−1/2α , (35)

∆ = 1/a is the initial bandwidth of the model, and we
assumed that ε À γ . According to Eqs. (30) and (34), the
renormalized value of the coupling constant at the scale
of the Fermi wave length is

α(λ ) =
1

2ln(ε/γ)
. (36)

In Fig. 3 we show the phase diagram of various trans-
port regimes. If ε . γ and L¿ l0 or, alternatively, ε & γ
and L¿ λ , the renormalization terminates by the system
size, Λ = L, and the system is in the ultraballistic regime
discussed above [see Eqs. (32) and (33)]. If ε À γ and
λ ¿ L ¿ l, the renormalization stops at Λ = λ and the
running scale does not reach L. We refer to this case as
“ballistic regime”, since the system size is still smaller
than the mean free path l,

l =
λ

πα(λ )
=
√

α
πε

[2ln(ε/γ)]3/2. (37)

This value [29] of the mean free path is a result of
the standard Born approximation with renormalized cou-
pling constant α(λ ). Note that for the model with ran-
dom scalar potential, the transport mean free path, which
determines diffusion coefficient, is twice longer, ltr = 2l.

In the ballistic regime, the renormalized energy is such
that ε(λ )L = L/λ À 1. This means that we have to use
the high-energy results of Sec. 4.2. In particular, with the
renormalized parameters, the conductance and the Fano

replacemen

ǫ

L

0 γ
0

l0

ultraballistic

ballistic

diffusive (antilocalization)

L = l

L = λ

FIGURE 3. Schematic “phase diagram” of various transport
regimes in the graphene sample with random potential. The
lines indicate crossovers between corresponding regimes. The
shortest sample exhibits ultraballistic transport with the con-
ductance and Fano factor given by Eqs. (32) and (33) respec-
tively. When the length of the sample exceeds Fermi wave
length (34), ballistic results (38) and (39) apply. In a sam-
ple longer than the mean free path (37), diffusive regime es-
tablishes with the Drude conductivity (40) and the Dorokhov
distribution of transmission eigenvalues (41). The conductivity
experiences symplectic antilocalization in this case.

factor, Eqs. (26) and (27), become

G =
e2

h
W
λ

[
1+

sin(2L/λ −π/4)
2
√

π(L/λ )3/2 − L
4l

]
, (38)

F =
1
8

[
1− 9sin(2L/λ −π/4)

2
√

π(L/λ )3/2 +
3L
4l

]
. (39)

In the expressions (38) and (39) there are two correc-
tions to the leading term. The first (oscillating) correction
exists in the clean limit and is small provided L À λ .
The second correction due to disorder is small only if
L¿ l. This imposes the natural upper bound on the bal-
listic regime: if the system size exceeds the mean free
path, electron transport becomes diffusive. In this case,
the system is naturally characterized by the conductivity
σ , which determines the conductance via the Ohm’s law,
G = σW/L. The Drude expression for the conductivity
reads [48]

σ =
4e2

πhα(λ )
=

8e2

πh
ln(ε/γ). (40)

The distribution function of transmission eigenvalues in
the diffusive regime is the same as in a usual quasi-one-
dimensional metallic sample [39]

P(T ) =
W

2πL
g

T
√

1−T
, (41)

with the dimensionless conductivity g = (πh/4e2)σ .
Taking into account interference effects leads to L de-
pendence of g in this formula, as we are going to discuss.
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FIGURE 4. Unified scaling function (43) for both ultrabal-
listic and diffusive regimes at zero energy in the case of the
random potential disorder.

6. SINGLE PARAMETER SCALING AT
ZERO ENERGY

Remarkably, the transmission distribution function at
zero energy appears to be the same in ultraballistic and
diffusive limits. In both cases it has the form of Dorokhov
distribution (41) with the parameter

g =





1+2α(L), ultraballistic,
πh
4e2 σ(L), diffusive,

(42)

which has the meaning of the dimensionless conductiv-
ity. In the ultraballistic regime, the scaling of g is in-
duced via renormalization of α according to equation
(28) while in the diffusive limit, gÀ 1 acquires antilocal-
ization corrections characteristic for a disordered system
of symplectic symmetry. This allows us to infer a unified
scaling law covering both limiting cases

∂ lng
∂ lnL

=

{
(g−1)2− (g−1)3/2, g−1¿ 1,

1/g, gÀ 1.
(43)

The scaling function (43) is depicted in Fig. 4. It is
qualitatively similar to the numerical results of Ref. [10].

We stress that the ultraballistic asymptotics of the beta
function in Eq. (43) is only valid for Gaussian white-
noise statistics of random potential. The interpolation
between the two asymptotics of the beta function in
Fig. 4 implicitly assumes a smooth crossover between
the two regimes (in particular, without any intermediate
fixed points), as suggested by numerical simulations.
[10, 11, 12, 14]

The scaling function (43) characterizes the evolu-
tion of the dimensionless conductivity with increasing
L. Whether the full distribution function P(T ) retains
exactly its form (41) (parameterized by g only) in the

crossover remains an open question. Strictly speaking,
what we know at the moment is that this form of P(T )
emerges (i) in the clean limit, (ii) in the ultraballistic
regime within the first order in α(L), and (iii) in the dif-
fusive regime. On this basis, one could speculate that this
might be an exact statement for the whole crossover.

7. SUMMARY

In this paper, we have analyzed transport properties of
a graphene sample in the “wide and short” geometry,
W À L, with disorder effects restricted to a random po-
tential scattering within a single valley. Starting from the
clean limit and using the transfer-matrix technique, we
have analyzed the evolution of the transmission distribu-
tion P(T ) and, in particular, of the conductance G and
the Fano factor F , with increasing system size L. To take
the randomness into account, we have developed a per-
turbative treatment of the transfer-matrix equations sup-
plemented by an RG formalism describing the renormal-
ization of disorder couplings. This has allowed us to get
complete analytical description of the transport proper-
ties of graphene in the ultraballistic (L¿ λ ) and ballistic
(λ ¿ L ¿ l) regimes. We have also constructed “phase
diagrams” of different transport regimes (ultraballistic,
ballistic, diffusive).
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