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Abstract. We present a semiclassical approach to the SU(N) Yang–Mills theory whose partition function at nonzero
temperatures is approximated by a saddle point – an ensemble of an infinite number of interacting dyons of N kinds. The
ensemble is governed by an exactly solvable 3d quantum field theory, allowing calculation of correlations functions relevant
to confinement. We show that all known criteria of confinement are satisfied in this semiclassical approximation: (i) the
average Polyakov line is zero below some critical temperature, and nonzero above it, (ii) a quark-antiquark pair has linear
rising potential energy, (iii) the average spatial Wilson loop falls off exponentially with the area, (iv) N2 gluons are canceled
out from the spectrum, (v) the critical deconfinement temperature is in good agreement with lattice data.

Using the same approximation, we find confinement for the exceptional gauge group G(2) and a first-order deconfinement
transition, also in agreement with lattice findings.
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INTRODUCTION

Quark confinement is one of the most puzzling phenom-
ena in modern physics. It is widely believed (and sup-
ported by numerical simulations on a lattice) that if one
attempts to separate a probe quark from an antiquark, or
a quark from two other quarks in a proton, a force of
about 14 tons (called the string tension) pulls it back,
and this force does not decrease with the separation! Al-
though long-range forces can be found in condensed mat-
ter physics (e.g. in the Ising model), it is for the first
time in history we encounter such a phenomenon in a
local microscopic theory, and it cries for an explanation.
However, after 35 years [1] of Quantum Chromodynam-
ics (QCD) not only an ab initio calculation of the “14
tons” is absent but there is still no consensus on what is
the qualitative mechanism of quark confinement.

Today we know for sure that nuclear and subnuclear
physics is governed by QCD – a local renormalizable
non-Abelian gauge theory of “colored” quarks interact-
ing with gluons being analogs of photons. Therefore, the
problem of confinement is, at least, formulated mathe-
matically: it must be a property of the quantum Yang–
Mills (YM) theory. Non-Abelian gauge invariance re-
quires that gluons interact, even in the absence of quarks.
In this paper we consider the pure YM theory with no dy-
namical quarks, also called the “pure glue” theory. How-
ever, quark sources or probes can be inserted to test cer-
tain YM correlation functions of interest, in particular we
shall be interested in the correlation function of Polyakov
lines and the average of large Wilson loops: these are
quantities that measure the force between probe quarks.

Gluons are massless due to gauge invariance, and the
only freedom a theorist has in a pure glue theory is the

choice of the gauge group. It is SU(3) for the real world,
but it is helpful to consider Yang–Mills theories based on
other Lie groups, in particular SU(N) at any N. (At the
end of the paper we consider also the exceptional G(2)
group for reasons explained there.) The scaling of most
physical observables with N at large N can be found from
simple N-counting rules, therefore considering arbitrary
SU(N) gauge groups provides a powerful check.

The gauge coupling constant αs, the analog of the
QED coupling α ' 1/137, is in fact not a constant and
hence not a parameter that one can choose at will: it
“runs” as function of the characteristic momentum at
hand. Owing to asymptotic freedom, it is small at large
and large at small momenta. As in any other asymptot-
ically free theory with no explicit scale parameter, the
“dimensional transmutation” occurs in the YM theory:
an exponentially large correlation length ξ appears, be-
ing the renormalization-invariant combination of the ul-
traviolet cutoff (e.g. the lattice spacing a) and the bare
coupling constant αs(a) given at that cutoff,

ξ ≡ 1
Λ

= a exp
(

3
11

1
λ (a)

)

, λ (a) =
αs(a)N

2π
(1)

where λ (a) is the so-called ’t Hooft bare coupling con-
stant; it does not depend on N at large N. Λ has the di-
mension of mass; it is called the YM scale parameter and
it actually defines all dimensional quantities in the the-
ory. The deconfinement phase transition temperature Tc
is proportional to Λ and the string tension is proportional
to Λ2 by dimensions. All dimensionless quantities are,
generally speaking, of the order of unity, hence it is a
strong-coupling problem from the start. It makes the the-
orist’s life hard.



Unfortunately, QCD will hardly be ever proved to
be an exactly solvable quantum field theory, even in
the large N limit. Therefore, one can either do exact
calculations in a theory that has more symmetries but is
not our world (e.g. considering supersymmetric versions
of QCD), or work with QCD but make approximations.
The first is useful as a theoretical laboratory, the second
is necessary to understand semi-quantitatively the key
phenomena, to explain experimental data, and to make
predictions.

An approximation is considered to be legitimate if
there is a systematic way of improving its accuracy. The
semiclassical approach which we develop below, belongs
to this category. One chooses a saddle-point classical
field and then has to take into account quantum fluctu-
ations about it. Part of the fluctuations are ultra-violet
and are thus the same as in empty space. Their role is to
renormalize the bare coupling constant; at this point the
YM scale parameter (1) emerges. What is left, is a se-
ries in ’t Hooft’s running coupling λ coming from loop
expansion in the background of classical configurations.
The running coupling is evaluated at the maximal mo-
mentum in the problem, be it temperature or the average
density of classical configurations. Speaking generally,
such expansion parameter is of the order of unity, how-
ever numerically it turns out to be small: λ is between
1
4 at zero temperature and 1

7 near Tc. Therefore, in the
whole range of temperatures within the confining phase
the semiclassical approximation is expected to yield an
accuracy of 15-25%, already in the 1-loop approxima-
tion (provided the saddle point is chosen correctly!) with
a potential for rapid improvement when higher loops are
taken into account. We shall see, however, that the actual
accuracy can be much better than this estimate. It is not a
too big price to pay if confinement, the most challenging
riddle in 35 years, is explained in simple terms.

We consider the pure Yang–Mills theory based on the
SU(N) gauge group in a broad range of temperatures
between 0 and Tc, the deconfinement phase transition
temperature. Although the formalism we use is designed
for nonzero T , we shall see that the physical observables
we find (such as the string tension) have a finite limit
when T → 0.

Confinement, as we understand it today and learn from
lattice experiments with a pure glue theory, has in fact
many facets, and all have to be explained. For exam-
ple, in a general SU(N) group one can consider “quarks”
in various irreducible representations. From the confine-
ment viewpoint all representations are characterized by
the phase it acquires under the gauge transformation
from the group center. The representation is said to have
“N-ality = k” if the phase is 2πk

N . Let us formulate math-
ematically the main confinement requirements that need

to be satisfied:

• the average Polyakov line in any N-ality nonzero
representation of the SU(N) group is zero below Tc
and nonzero above it

• the potential energy of two static color sources
(defined through the correlation function of two
Polyakov lines) asymptotically rises linearly with
the separation; the slope called the string tension de-
pends only on the N-ality of the sources

• the average of the spatial Wilson loop decays expo-
nentially with the area spanning the contour; at van-
ishing temperatures the spatial (“magnetic”) string
tension has to coincide with the “electric” one, for
all representations

• the mass gap: no massless gluons should be left in
the spectrum.

Remarkably, all these requirements are satisfied al-
ready in a semiclassical approximation if one uses an
ensemble of dyons as a saddle point in the Yang–Mills
partition function [2].

YANG–MILLS THEORY AT NONZERO
TEMPERATURES

Following Feynman, the Yang–Mills (YM) partition
function can be written as a functional integral over
the YM 4-potentials Aµ(t,x) that are traceless hermitian
N×N matrices, satisfying periodic boundary conditions
in imaginary (or Euclidean) time:

Z =

∫

DAµ(t,x) exp

(

− 1
2g2

∫ 1
T

0
dt
∫

d3xTr Fµν Fµν

)

,(2)

Aµ

(

t +
1
T

,x
)

= Aµ(t,x), T = temperature,

where Fµν = ∂µ Aν − ∂ν Aµ − i[Aµ Aν ] is the YM field
strength.

An important variable is the Polyakov loop; it is the
path-ordered exponent in time direction, hence it can
depend only on the space point x:

L(x) = P exp

(

i
∫ 1

T

0
dt A4(t,x)

)

, L ∈ SU(N).

(3)
Under space-dependent gauge transformations it trans-
forms as L→U−1LU . The eigenvalues of L(x) are gauge
invariant; we parameterize them as

L = diag
(

e2πiµ1 ,e2πiµ2 , . . . ,e2πiµN
)

, (4)

µ1+. . .+ µN = 0, and assume that the phases of these
eigenvalues are ordered: µ1 ≤ µ2 ≤ . . . ≤ µN ≤ µN+1 ≡
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FIGURE 1. The perturbative potential energy as function of the Polyakov line for the SU(2) (left) and SU(3) (right) groups. It
has minima where the Polyakov loop is one of the N elements of the center ZN and is maximal at the “confining” holonomy.

µ1+1. We shall call the set of N phases {µm} the “holon-
omy” for short. Apparently, shifting µ’s by integers does
not change the eigenvalues, hence all quantities have to
be periodic in all µ’s with a period equal to unity.

The holonomy is said to be “trivial” if L belongs to one
of the N elements of the group center ZN . For example,
in SU(3) the three trivial holonomies are

µ1 = µ2 = µ3 = 0 =⇒ L = 13,

µ1 = −2
3
,µ2 =

1
3
,µ3 =

1
3

=⇒ L = e
2πi
3 13,

µ1 = −1
3
,µ2 = −1

3
,µ3 =

2
3

=⇒ L = e−
2πi
3 13.

Trivial holonomy corresponds to equal µ’s, modulo
unity. Out of all possible combinations of µ’s a distin-
guished role is played by equidistant µ’s corresponding
to TrL = 0:

µconf
m = −1

2
− 1

2N
+

m
N

. (5)

For example, in SU(3) it is

µ1 = −1
3
,µ2 = 0,µ3 =

1
3

=⇒ L = diag
(

e−
2πi
3 ,1,e

2πi
3

)

.

(6)
We shall call it “most non-trivial” or “confining” holon-
omy as it corresponds to TrL = 0 which is the 1st con-
finement requirement.

Immediately, an interesting question arises: Imagine
we take the YM partition function (2) and integrate
out all degrees of freedom except the eigenvalues {µm}
of the Polyakov loop L(x) which, in addition, we take
slowly varying in space. What is the effective action for
µ’s? What set of µ’s is preferred dynamically by the YM
system of fields?

First of all, one can address this question in perturba-
tion theory: the result for the potential energy as function

of µ’s is [3, 4]

Ppert =
(2π)2T 3

3

N

∑
m>n

(µm−µn)
2[1−(µm−µn)]

2

∣

∣

∣

∣

∣

mod1

. (7)

It is proportional to T 3 (by dimensions) and has exactly
N zero minima when all µ’s are equal modulo unity, see
Fig. 1. Hence, Ppert says that at least at high temperatures
the system prefers one of the N trivial holonomies corre-
sponding to the Polyakov loop being one of the N ele-
ments of the center ZN . However, terms with gradients of
µ’s in the effective action become negative near “trivial”
holonomy, signalling its instability even in perturbation
theory [5].

It is interesting that in the supersymmetric N =1 ver-
sion of the YM theory (where in addition to gluons there
are spin- 1

2 gluinos in the adjoint representation) the per-
turbative potential energy (7) is absent in all orders ow-
ing to fermion-boson cancelation, but the nonperturba-
tive potential energy is nonzero. Moreover, it is known
exactly as function of µ’s [6]: it has a single minimum
at precisely the “most non-trivial” or “confining” holon-
omy (5). The result can be traced to the semiclassical
contribution of dyons, which turns out to be exact owing
to supersymmetry.

In the non-supersymmetric pure YM theory, the dyon-
induced contribution cannot be computed exactly but
only in the semiclassical approximation (this is what the
paper is about), and the perturbative contribution (7) is
present, too. We shall show below that a semiclassical
configuration – an ensemble of dyons with quantum fluc-
tuations about it – generates a nonperturbative free en-
ergy shown in Fig. 2. It has the opposite behavior of the
perturbative one, having the minimum at the equidistant
(confining) values of the µ’s. There is a fight between the
perturbative and nonperturbative contributions to the free
energy [7]. Since the perturbative contribution to the free
energy is∼T 4 with respect to the nonperturbative one, it
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FIGURE 2. The dyon-induced nonperturbative potential energy as function of the Polyakov line for the SU(2) (left) and SU(3)
(right) groups. Contrary to the perturbative potential energy, it has a single and non-degenerate minimum at the confining holonomy
corresponding to TrL = 0.

certainly wins when temperatures are high enough, and
the system is then forced into one of the N vacua thus
breaking spontaneously the ZN symmetry. At low tem-
peratures the nonperturbative contribution prevails forc-
ing the system into the confining vacuum. At a critical Tc
there is a confinement-deconfinement phase transition. It
turns out to be of the second order for N=2 but first order
for N =3 and higher, in agreement with lattice findings.

DYON SADDLE POINTS

Dyons or Bogomolny–Prasad–Sommerfield (BPS)
monopoles [8] are (anti) self-dual solutions of the
nonlinear Maxwell equations, Dab

µ Fb
µν = 0. In SU(N)

there are exactly N kinds of ‘fundamental’ dyons with
Coulomb asymptotics for both electric and magnetic
fields (hence the term “dyon”):

±E = B
|x|→∞
=

1
2

x
|x|3 ×



















diag(1,−1,0, ...,0,0)
diag(0,1,−1, ...,0,0)

. . .
diag(0,0,0, ...,1,−1)
diag(−1,0,0, ...,0,1)

. (8)

Dyon solutions are labeled by the holonomy or the set of
µ’s at spatial infinity:

A4(|x|→∞) → 2πTdiag(µ1,µ2, . . . ,µN). (9)

The explicit expressions for the solutions in various
gauges can be found e.g. in the Appendix of Ref. [9]. In-
side the cores which are of the size ∼ 1/(Tνm), the fields
are large, nonlinearity is essential. The action density is
time-independent everywhere and is proportional to the
temperature. Isolated dyons are thus 3d objects but with
finite action independent of temperature:

Sdyon =
2π
αs

νm, νm ≡ µm+1 −µm, ∑
m

νm = 1, (10)

(here µN+1 ≡ µ1 + 1). The full action of all N kinds
of well-separated dyons together is that of one standard
instanton: Sinst = 2π/αs.

In the semiclassical approach, one has first of all to
find the statistical weight with which a given classical
configuration enters the partition function. It is given
by exp(−Action), times the determinant−1/2 from small
quantum oscillations about the saddle point. For an iso-
lated dyon as a saddle-point configuration, this factor di-
verges linearly in the infrared region owing to the slow
Coulomb decrease of the dyon field (8). It means that iso-
lated dyons are not acceptable as saddle points: they have
zero weight, despite finite classical action. However, one
may look for classical solutions that are superpositions
of N fundamental dyons, with zero net magnetic charge.
The small-oscillation determinant must be infrared-finite
for such classical solutions, if they exist.

INSTANTONS WITH NON-TRIVIAL
HOLONOMY

The needed classical solution has been found a decade
ago by Kraan and van Baal [10] and independently by
Lee and Lu [11], see also [12]. We shall call them for
short the “KvBLL instantons”; an alternative name is
“calorons with nontrivial holonomy”. The solution was
first found for the SU(2) group but soon generalized to
an arbitrary SU(N) [13], see [14] for a review.

The general solution AKvBLL
µ depends on Euclidean

time t and space x and is parameterized by 3N positions
of N kinds of ‘constituent’ dyons in space x1, . . . ,xN and
their U(1) phases ψ1, . . . ,ψN . All in all, there are 4N
collective coordinates characterizing the solution (called
the moduli space), of which the action Sinst = 2π/αs
is in fact independent, as it should be for a general
solution with a unity topological charge. The solution
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FIGURE 3. Action density inside the SU(3) KvBLL instanton as function of time and one space coordinate, for large (left),
intermediate (middle) and small (right) separations between the three constituent dyons.

also depends explicitly on temperature T and on the
holonomy µ1, . . . ,µN :

AKvBLL
µ = Āa

µ(t,x; x1, . . . ,xN ,ψ1, . . . ,ψN ; T,µ1, . . . ,µN).
(11)

The solution is a relatively simple expression given by
elementary functions. If the holonomy is trivial (all µ’s
are equal modulo unity) the expression takes the form of
the strictly periodic O(3) symmetric caloron [15] reduc-
ing further to the standard O(4) symmetric BPST instan-
ton [16] in the T → 0 limit. At small temperatures but
arbitrary holonomy, the KvBLL instanton also has only
a small O(T ) difference with the standard instanton.

One can plot the action density of the KvBLL instan-
ton in various corners of the parameter (moduli) space,
see Fig. 3.

When all dyons are far apart one observes N static
(i.e. time-independent) objects, the isolated dyons. As
they merge, the configuration is not static anymore, it
becomes a process in time. In the limiting case of a
complete merger, the configuration becomes a 4d lump
resembling the standard instanton. The full (integrated)
action is exactly the same Sinst = 2π/αs for any choice
of the dyon separations. It means that classically dyons
do not interact. However, they do experience a peculiar
interaction at the quantum level to which we proceed.

QUANTUM WEIGHT OF MANY DYONS

Remarkably, the small-oscillation determinant about a
single KvBLL SU(N) instanton made of N different-
kind dyons can be computed exactly [17, 18]. With this
experience, the quantum weight of an arbitrary number
of dyons of N kinds has been suggested in Ref. [2]. In
the YM partition function, there are saddle points cor-
responding to any set of Km dyons. In the thermody-
namic limit V → ∞ one needs to take a saddle point with
O(V ) dyons. Let Km be the number of dyons of kind
m (m = 1 . . .N) and let xmi be the coordinate of the ith

dyon of kind m (i = 1 . . .Km). In the semiclassical ap-
proximation the YM partition function is approximated
by the partition function of a grand canonical ensemble
of K1 +K2 + . . .+KN dyons,

Z = ∑
K1...KN

1
K1!...KN!

N

∏
m=1

Km

∏
i=1

∫

(dxmi f )
√

detg(xmi),

(12)
where g(xmi) is a 4(K1 + . . . + KN)× 4(K1 + . . . + KN)
metric tensor of the dyons’ moduli space, composed by
the overlaps of zero modes of individual dyons, and f is
the fugacity,

f =
N2

4πλ 2
Λ4

T
= O(N2). (13)

The bare ’t Hooft coupling constant λ is renormalized
and starts to “run” only at the 2-loop level not considered
here. Eventually, its argument will be the largest scale
in the problem, be it the temperature or the equilibrium
density of dyons.

It is not difficult to find the metric tensor g(xmi) for
well-separated dyons. In this case the four zero modes
φ (κ)

µ (κ = 1,2,3,4) of individual dyons are given by the

components of the field strength: φ (κ)
µ = Fµκ . The zero

modes for the mth kind of dyon are normalized to its ac-
tion,

∫

Trφ (κ)
µ φ (λ )

µ ∼ δ κλ νm (see Eq. (10)) and hence de-
pend on the holonomy. Since the field strengths decay
as 1/r2 (see Eq. (8)) the overlaps between zero modes
are Coulomb-like, and only those that are nearest neigh-
bors in m do interact. In fact, the diagonal components of
the metric tensor also acquire Coulomb-like corrections
since the action of individual dyons is actually normal-
ized to its asymptotic field A4 that gets Coulomb correc-
tions from other dyons.

As a result, we obtain the 4(K1 + . . . + KN)× 4(K1 +
. . .+KN) metric tensor g(xmi) with Coulomb interactions
as entries, and the νm’s on the diagonal. It turns out that
its determinant is a square of the determinant of a related



matrix,
√

detg = detG where G is a (K1 + . . . + KN)×
(K1 + . . .+KN) matrix:

Gmi,n j = δmnδi j

(

4πνm +∑
k

1
T |xmi−xm−1,k|

(14)

+ ∑
k

1
T |xmi−xm+1,k|

−2 ∑
k 6=i

1
T |xmi−xmk|

)

− δm,n−1

T |xmi−xm+1, j|
− δm,n+1

T |xmi−xm−1, j|
+2

δmn

T |xmi−xm j|

∣

∣

∣

∣

i6= j
,

where xmi is the coordinate of the ith dyon of kind m. The
matrix G has the following nice properties:

• symmetry: Gmi,n j = Gn j,mi

• overall “neutrality”: the sum of Coulomb interac-
tions in non-diagonal entries cancel those on the di-
agonal: ∑n j Gmi,n j = 4πνm

• identity loss: dyons of the same kind are indis-
tinguishable, meaning mathematically that detG is
symmetric under permutation of any pair of dyons
(i↔ j) of the same kind m. Dyons do not ‘know’ to
which instanton they belong to

• attraction/repulsion: if one decreases the separation
between same-kind dyons or increases the sepa-
ration between different-kind dyons, the detG de-
creases. It means that same-kind dyons repulse
each other whereas different-kind dyons attract each
other. The detG measure favors formation of neutral
clusters with N different kinds of dyons

• factorization: in the geometry when dyons fall into
K well separated neutral clusters of N dyons of
different kinds, detG factorizes into a product of
exact integration measures for K KvBLL instan-
tons [19, 20] valid for any separations between
different-kind dyons, including their strong overlap

• last but not least, the metric g corresponding to G is
hyper-Kähler, as it should be for the moduli space of
a self-dual classical field [21]. In fact, it is a severe
restriction on the metric.

An overall constant factor depending on the holon-
omy and temperature, exp(−PpertV ), is understood in
Eq. (12), where Ppert is the perturbative gluon loop (7)
in the background of a constant field A4 (9). This factor
arises from the non-zero modes in the fluctuation deter-
minant about dyons and is necessarily present as most of
the 3d space outside the dyons’ core is just a constant A4
background. Indeed the calculation [17, 18] exhibits this
factor which is the only one proportional to the 3-volume
V .

The ensemble defined by a determinant of a matrix
whose dimension is the number of particles, is not a
usual one. More customary, the interaction is given by

the Boltzmann factor exp(−Uint(x1, . . .)). Of course, one
can always present the determinant in that way using
the identity detG = exp(Tr logG) ≡ exp(−Uint) but the
interactions will then include three-, four-, five-... body
forces. At the same time, it is precisely the determinant
form of the interaction that makes the statistical physics
of dyons an exactly solvable problem.

STATISTICAL PHYSICS OF DYONS AS
A QUANTUM FIELD THEORY

It is possible to present the grand canonical ensemble of
dyons, governed by the interaction (14) as an equivalent
3d quantum field theory. This will enable us to compute
various correlation functions of interest.

To proceed to the quantum field theory description we
use two mathematical tricks.

1. “Fermionization” (Berezin [22]). It is helpful to ex-
ponentiate the Coulomb interactions rather than keeping
them in detG. To that end one presents the determinant
of a matrix as an integral over a finite number of anti-
commuting Grassmann variables:

det(GAB) =

∫

∏
A

dψ†
A dψA exp

(

ψ†
A GAB ψB

)

.

Now we have the two-body Coulomb interactions in
the exponent and it is possible to use the second trick.

2. “Bosonization” (Polyakov [23]). One can present
the Coulomb interactions in the exponent with the help
of a Gaussian integral over an auxiliary field φ :

exp

(

∑
m,n

QmQn

|xm −xn|

)

=
∫

Dφ exp
[

−
∫

dx

·
(

1
16π

∂iφ∂iφ +ρφ
)]

= exp
(

∫

ρ
4π
4 ρ

)

,

ρ = ∑Qm δ (x−xm).

After applying the first trick the “charges” Qm become
Grassmann variables but after applying the second one,
it becomes easy to integrate them out since the square
of a Grassmann variable is zero. In fact one needs 2N
boson fields vm,wm to reproduce diagonal elements of G
and 2N anticommuting (“ghost”) fields χ†

m,χm to present
the non-diagonal elements. The chain of identities is
accomplished in Ref. [2] and the result for the partition
function for the dyon ensemble is, identically, a path
integral defining a quantum field theory in 3 dimensions:

Z =
∫

Dχ† Dχ DvDw exp
∫

d3x
{

T
4π
(

∂iχ†
m∂iχm



+ ∂ivm∂iwm)+ f
[

(−4πµm +vm)
∂F

∂wm

+ χ†
m

∂ 2F

∂wm∂wn
χn

]}

, F =
N

∑
m=1

ewm−wm+1 . (15)

The fields vm have the meaning of the asymptotic
Abelian electric potentials of dyons,

(A4)mn = δmn Am4, (16)

Am4(x)/T = 2πµm − 1
2 vm(x), Em = ∇Am4,

while wm have the meaning of the dual (or magnetic)
Abelian potentials. Note that the kinetic energy for the
vm,wm fields has only the mixing term ∂ivm∂iwm which
is nothing but the Abelian duality transformation E ·B.
The function F (w) in (15) where one assumes a cyclic
summation over m, is known as the periodic (or affine)
Toda lattice.

Although the Lagrangian in Eq. (15) describes a
highly nonlinear interacting quantum field theory, it is
in fact exactly solvable! To prove it, one observes that
the fields vm enter the Lagrangian only linearly, there-
fore one can integrate them out. It leads to a functional
δ -function:

∫

Dvm −→ δ
(

− T
4π

∂ 2wm + f
∂F

∂wm

)

. (17)

This δ -function restricts possible fields wm over which
one still has to integrate in eq. (15). Let w̄m be a solution
to the argument of the δ -function. Integrating over small
fluctuations about w̄ gives the Jacobian

Jac = det−1
(

− T
4π

∂ 2δmn + f
∂ 2F

∂wm∂wn

∣

∣

∣

∣

w=w̄

)

. (18)

Remarkably, exactly the same functional determinant
(but in the numerator) arises from integrating over the
ghost fields, for any background w̄. Therefore, all quan-
tum corrections cancel exactly between the boson and
ghost fields (a characteristic feature of supersymmetry),
and the ensemble of dyons is basically governed by a
classical field theory.

To find the ground state we examine the fields’ poten-
tial energy being −4π f µm∂F/∂wm which we prefer to
write restoring νm = µm+1 −µm and F as

P = −4π fV ∑
m

νm ewm−wm+1 (19)

(the volume factor arises for constant fields wm). One has
first to find the stationary point in wm for a given set of
νm’s. It leads to the equations

∂P

∂wm
= 0

whose solution is

ew1−w2 =
(ν1ν2ν3...νN)

1
N

ν1
, etc. (20)

Putting it back into eq. (19) we obtain

P = −4π fVN(ν1ν2...νN)
1
N , ν1 + ...+νN = 1. (21)

The minimum is achieved at the equidistant, confining
value of the holonomy, see Eq. (5). We have also proven
that the result is exact, as all potential quantum correc-
tions cancel in the partition function (15).

Given this cancelation, the key finding – that the dyon-
induced free energy has the minimum at the confining
value of holonomy – is trivial. If all Coulomb interactions
cancel after integration over dyons’ positions, the weight
of a many-dyon configuration is the same as if they
were infinitely dilute (although they are not). Then the
weight, what concerns the holonomy, is proportional to
the product of diagonal matrix elements of G in the
dilute limit, that is to the normalization integrals for dyon
zero modes, that is to the product of the dyon actions
∼ νm where νm = µm+1 − µm and νN = µ1 + 1 − µN
such that ν1 +ν2 + . . .+νN = 1. The sum of all N kinds
of dyons’ actions is fixed and equal to the instanton
action, however, it is the product of actions that defines
the weight. The product is maximal when all actions
are equal, hence the equidistant or confining µ’s are
statistically preferred. Thus, the average Polyakov line
is zero, < TrL >= 0.

HEAVY QUARK POTENTIAL

The field-theoretic representation of the dyon ensemble
enables one to compute various YM correlation functions
in the semiclassical approximation. The key observables
relevant to confinement are the correlation function of
two Polyakov lines (defining the heavy quark potential),
and the average of large Wilson loops. A detailed calcu-
lation of these quantities is performed in Ref. [2]; here
we only present the results and discuss the meaning.

N-ality and k-strings

From the viewpoint of confinement, all irreducible
representations of the SU(N) group fall into N classes:
those that appear in the direct product of any number
of adjoint representations, and those that appear in the
direct product of any number of adjoint representations
with the irreducible representation being the rank-k anti-
symmetric tensor, k = 1, . . . ,N−1. “N-ality” is said to be



zero in the first case and equal to k in the second. N-ality-
zero representations transform trivially under the center
of the group ZN ; the rest acquire a phase 2πk/N.

One expects that there is no asymptotic linear potential
between static color sources in the adjoint representation
as such sources are screened by gluons. If a representa-
tion is found in a direct product of some number of ad-
joint representations and a rank-k antisymmetric repre-
sentation, the adjoint ones “cancel out” as they can be all
screened by an appropriate number of gluons. Therefore,
from the confinement viewpoint all N-ality = k represen-
tations are equivalent and there are only N −1 string ten-
sions σk,N being the coefficients in the asymptotic linear
potential for sources in the antisymmetric rank-k repre-
sentation. They are called “k-strings”.

The value k = 1 corresponds to the fundamental rep-
resentation whereas k = N−1 corresponds to the repre-
sentation conjugate to the fundamental [quarks and anti-
quarks]. In general, the rank-(N−k) antisymmetric rep-
resentation is conjugate to the rank-k one; it has the same
dimension and the same string tension, σk,N = σN−k,N .

The behavior of σk,N as function of k and N is
an important issue as it discriminates between vari-
ous confinement mechanisms. On general N-counting
grounds one can only infer that at large N and k �
N, σk,N/σ1,N = (k/N)(1 + O(1/N2)). Important, there
should be no O(N−1) correction [24]. A popular version
called “Casimir scaling”, according to which the string
tension is proportional to the Casimir operator for a given
representation (it stems from an idea that confinement is
somehow related to the modification of a one-gluon ex-
change at large distances), does not satisfy this restric-
tion.

Correlation function of Polyakov lines

To find the potential energy Vk,N of static “quark” and
“antiquark” transforming according to the antisymmetric
rank-k representation, one has to consider the correlation
of Polyakov lines in the appropriate representation:

〈

TrLk,N(z1) TrL†
k,N(z2)

〉

=const. exp
(

−Vk,N(z1−z2)

T

)

.

(22)
Far away from dyons’ cores the field is Abelian and
in the field-theoretic language of Eq. (15) is given by
Eq. (16). Therefore, the Polyakov line in the fundamental
representation is

TrL(z)=
N

∑
m=1

Zm, Zm = exp
(

2π iµm−
i
2

vm(z)
)

. (23)

In the general antisymmetric rank-k representation

TrLk,N(z) =
N

∑
m1<m2<...<mk

Zm1 Zm2 ...Zmk (24)

where cyclic summation from 1 to N is assumed.
The average (22) can be computed from the quantum

field theory (15). Inserting the two Polyakov lines (24)
into Eq. (15) we observe that the Abelian electric poten-
tial vm enters linearly in the exponent as before. There-
fore, it can be integrated out, leading to a δ -function for
the dual field wm, which is now shifted by the source (cf.
Eq. (17)):

∫

Dvm −→ ∏
m

δ
(

− T
4π

∂ 2wm + f
∂F

∂wm

− i
2

δ (x−z1)(δmm1 + . . .+δmmk)

+
i
2

δ (x−z2)(δmn1 + . . .+δmnk)

)

.

One has to find the dual field wm(x) nullifying the argu-
ment of this δ -function, plug it into the action

exp
(

∫

dx
4π f
N

F (w)

)

, (25)

and sum over all sets {m1 < m2 < ... <
mk}, {n1 < n2 < ... < nk} with the weight
exp(2π i(m1+. . .+mk −n1−. . .−nk)/N). The Jaco-
bian from resolving the δ -function again cancels exactly
with the determinant arising from ghosts. Therefore,
the calculation of the correlator (22), sketched above, is
exact.

At large separations between the sources |z1−z2|, the
fields wm resolving the δ -function are small and one can
expand the Toda chain:

F (w) = ∑
m

ewm−wm+1 ≈ N +
1
2

wm Mmn wn, (26)

where

M =











2 −1 0 . . . 0 −1
−1 2 −1 . . . 0 0
0 −1 2 −1 . . . 0
. . . . . . . . . . . . . . . . . .
−1 0 0 . . . −1 2











. (27)

As apparent from Eq. (26), the eigenvalues of M deter-
mine the spectrum of the dual fields wm. There is one
zero eigenvalue which decouples from everywhere, and
N−1 nonzero eigenvalues

M
(k) =

(

2sin
πk
N

)2

, k = 1, ...,N −1. (28)



Certain orthogonality relation imposes the selection
rule: the asymptotics of the correlation function of two
Polyakov lines in the antisymmetric rank-k representa-
tion is determined by precisely the kth eigenvalue. We
obtain [2]

〈

TrLk,N(z1) TrL†
k,N(z2)

〉

(29)

z12→∞
= const. exp

(

−|z1− z2|M
√

M (k)
)

where M is the ‘dual photon’ mass,

M2 =
4π f

T
=

16π2Λ4

g4T 2 = O(N2). (30)

Comparing it with the definition of the heavy quark
potential (22) we find that there is an asymptotically
linear potential between static “quarks” in any N-ality
nonzero representation, with the k-string tension

σk,N = MT
√

M (k) = 2MT sin
πk
N

=
Λ2

λ
N
π

sin
πk
N

.

(31)
This is the so-called ‘sine regime’: it has been found
before in certain supersymmetric theories [25]. Lattice
simulations [26] support this regime, whereas another
lattice study [27] gives somewhat smaller values but
within two standard deviations from the values following
from eq. (31).

We see that at large N and k � N, σk,N/σ1,N =

(k/N)(1+O(1/N2)), as it should be on general grounds,
and that all k-string tensions have a finite limit at zero
temperature.

AREA LAW FOR LARGE WILSON
LOOPS

The magnetic field of dyons beyond their cores is
Abelian and is a superposition of the Abelian fields of
individual dyons. For large Wilson loops we are inter-
ested in, it is this superposition field of a large number
of dyons that contributes most as they have a slowly de-
creasing 1/|x−xi| asymptotics, hence the use of the field
outside the cores is justified. Owing to self-duality,

[Bi(x)]mn = [∂iA4(x)]mn = −T
2

δmn ∂ivm(x), (32)

cf. eq. (16). Since Ai is Abelian beyond the cores, one
can use the Stokes theorem for the spatial Wilson loop:

W ≡ Tr P exp i
∮

Aidxi = Tr exp i
∫

Bi d2σ i

= ∑
m

exp
(

−i
T
2

∫

d2σ i ∂ivm

)

. (33)

Eq. (33) may look contradictory as we first use Bi =
curlAi and then Bi = ∂iA4. Actually there is no contra-
diction as the last equation is true up to Dirac string
singularities which carry away the magnetic flux. If the
Dirac string pierces the surface spanning the loop it gives
a quantized contribution exp(2π i·integer) = 1; one can
also use the gauge freedom to direct Dirac strings parallel
to the loop surface in which case there is no contribution
from the Dirac strings at all.

Let us take a flat Wilson loop lying in the (xy) plane at
z=0. Then eq. (33) is continued as

W = ∑
m

exp
(

−i
T
2

∫

x,y∈Area
d3x∂zvmδ (z)

)

= ∑
m

exp
(

i
T
2

∫

x,y∈Area
d3xvm ∂zδ (z)

)

. (34)

It means that the average of the Wilson loop in the dyon
ensemble is given by the partition function (15) with the
source

∑
m

exp
(

i
T
2

∫

d3x vm
dδ (z)

dz
θ (x,y ∈ Area)

)

where θ (x,y ∈ Area) is a step function equal to unity if
x,y belong to the area inside the loop and equal to zero
otherwise.

As in the case of the Polyakov lines the presence of the
Wilson loop shifts the argument of the δ -function arising
from the integration over the vm variables, and the ghost
determinant cancels exactly the Jacobian from the fluc-
tuations of wm’s, therefore the classical-field calculation
is exact.

One has to solve the non-linear Toda equations on
wm’s with a source along the surface of the loop,

−∂ 2wm +M2 (ewm−wm+1 − ewm−1−wm
)

= −2π iδmm1

dδ (z)
dz

θ (x,y ∈ Area), (35)

for all m1, plug it into the action (4π f/N)F (w), and
sum over m1. In order to evaluate the average of the
Wilson loop in a general antisymmetric rank-k repre-
sentation, one has to take the source in eq. (35) as
−2π iδ ′(z)

(

δmm1 +. . .+δmmk

)

and sum over m1 < .. .<
mk from 1 to N, see eq. (24).

Contrary to the case of the Polyakov lines, one cannot,
generally speaking, linearize eq. (35) in wm but has to
solve the non-linear equations as they are. The Toda
equations (35) with a δ ′(z) source in the r.h.s. define
“pinned soliton” solutions wm(z) that are 1d functions
in the direction transverse to the surface spanning the
Wilson loop but do not depend on the coordinates x,y
provided they are taken inside the loop. Beyond that
surface wm = 0. Along the perimeter of the loop, wm



interpolate between the soliton and zero. For large areas,
the action (25) is therefore proportional to the area of
the surface spanning the loop, which gives the famous
area law for the average Wilson loop. The coefficient in
the area law, the ‘magnetic’ string tension, is found from
integrating the action density of the soliton wm(z) in the
z direction.

The exact solutions of Eq. (35) for any N and any
representation k have been found in Ref. [2], and the
resulting ‘magnetic’ string tension turns out to be

σk,N =
Λ2

λ
N
π

sin
πk
N

, (36)

which coincides with the ‘electric’ string tension (31)
found from the correlators of the Polyakov lines, for all
k-strings!

Several comments are in order here.

• The ‘electric’ and ‘magnetic’ string tensions should
coincide only in the limit T → 0 where the Eu-
clidean O(4) symmetry is restored. Both calcula-
tions have been in fact performed in that limit as
we have ignored the temperature-dependent pertur-
bative potential (7). If it is included, the ‘electric’
and ‘magnetic’ string tensions split.

• despite that the theory (15) is 3-dimensional, with
the temperature entering just as a parameter in the
Lagrangian, it “knows” about the restoration of Eu-
clidean O(4) symmetry at T → 0.

• the ‘electric’ and ‘magnetic’ string tensions are
technically obtained in very different ways: the first
is related to the mass of the elementary excitation
of the dual fields wm, whereas the latter is related to
the mass of the dual field soliton.

CANCELATION OF GLUONS IN THE
CONFINEMENT PHASE

To prove confinement, it is insufficient to demonstrate
the area law for large Wilson loops and the zero average
for the Polyakov line: it must be shown that there are
no massless gluons left in the spectrum. We give an
argument that this indeed happens in the dyon vacuum.

A manifestation of massless gluons in perturbation
theory is the Stefan–Boltzmann law for the free energy:

−T
V

logZSB =
FSB

V
= −π2

45
T 4 (N2 −1). (37)

It is proportional to the number of gluons N2−1 and
has the T 4 behaviour characteristic of massless particles.
In the confinement phase, neither is permissible: If only
glueballs are left in the spectrum the free energy must
be O(N0) and the temperature dependence must be very

weak until T ≈ Tc where it abruptly rises owing to the
excitation of many glueballs.

The nonperturbative free energy corresponding to the
minimum of the dyon-induced potential energy as func-
tion of the holonomy (21) is

Fdyon

V
= − N2

2π2
Λ4

λ 2 . (38)

It is O(N2) but temperature-independent. We have dou-
bled the minimum from eq. (21) keeping in mind that
there are also anti-dyons and assuming that their interac-
tions with dyons is not as strong as the interactions be-
tween dyons and anti-dyons separately, as induced by the
determinant measure (14), therefore treating dyons and
anti-dyons as two independent “liquids”. (By the same
logic, the string tension (31) has to be multiplied by

√
2

as due to anti-dyons.)
Dyons force the system to have the “most nontrivial”

holonomy (5). For that holonomy, the perturbative poten-
tial energy (7) is at its maximum equal to

Fpert,max

V
=

π2

45
T 4
(

N2 − 1
N2

)

. (39)

The full free energy is the sum of the three terms above.
We see that the leading O(N2) term in the Stefan–

Boltzmann law is canceled by the potential energy pre-
cisely at the confining holonomy point and nowhere else!
In fact it seems to be the only way how O(N2) massless
gluons can be canceled out of the free energy, and the
main question shifts to why does the system prefer the
“most nontrivial” holonomy. Dyons seem to answer that
question.

DECONFINEMENT PHASE
TRANSITION

As the temperature rises, the perturbative free energy
grows as T 4 and eventually it overcomes the negative
nonperturbative free energy (38). At this point, the triv-
ial holonomy for which both the perturbative and non-
perturbative free energy are zero, becomes favorable.
Therefore an estimate of the critical deconfinement tem-
perature comes from equating the sum of Eq. (38) and
Eq. (39) to zero, which gives

T 4
c =

45
2π4

N4

N4 −1
Λ4

λ 2 . (40)

As expected, it is stable in N. A more robust quantity,
both from the theoretical and lattice viewpoints, is the ra-
tio Tc/

√
σ where σ is the string tension in the fundamen-

tal representation, since in this ratio the poorly known



SU(3) SU(4) SU(6) SU(8)

Tc/
√

σ , theory 0.6430 0.6150 0.5967 0.5906

Tc/
√

σ , lattice 0.6462(30) 0.6344(81) 0.6101(51) 0.5928(107)

parameters Λ and λ cancel out:

Tc√
σ

=

(

45
4π4

π2N2

(N4 −1)sin2 π
N

) 1
4

N→∞−→ 1
π

(

45
4

) 1
4
.

(41)
In the Table, we compare the values from Eq. (41) to

those measured in lattice simulations of the pure SU(N)
gauge theories [28]; there is a surprisingly good agree-
ment. A detailed study of the thermodynamics of the
phase transition will be published elsewhere.

AN EXCEPTIONAL GIFT

It is illuminating to go beyond the SU(N) gauge groups
and consider the YM theory based on e.g. the exceptional
group G(2). It has rank 2 and is similar to the SU(3)
group but has only a trivial center, meaning that only a
unity element commutes with all other group elements
(in SU(N) there are N such matrices being N-roots of
unity; they form the group center ZN). Since confinement
in SU(N) is often associated with the symmetric distribu-
tion of the Polyakov line eigenvalues with respect to the
ZN permutations, and the deconfinement transition is as-
sociated with the spontaneous breaking of ZN symmetry,
while neither is a feature of G(2), questions have been
raised whether there is at all confinement in G(2), leave
alone the confinement-deconfinement phase transition.

However, recent numerical simulations of G(2) per-
formed by three groups [29] showed that there is con-
finement at low T and a first-order deconfinement transi-
tion. By confinement we mean here the zero average of
the Polyakov line in the lowest 7-dimensional representa-
tion. These findings pose difficulties for the confinement
scenarios based on the center of the group, e.g. on center
vortices.

The dyon scenario works, however, exceptionally well
it this case, too. We have repeated all the steps described
in this paper but applied to the G(2) group. There are
three types of fundamental dyons (like in SU(3)) but
neutral clusters are formed by four; overall neutrality re-
quires that one type of dyons have to enter twice more of-
ten than the two others. The minimum of the free energy
for the dyon ensemble lies exactly at the holonomy cor-
responding to the zero Polyakov line. The Wilson loop

exhibits an area behavior. At a critical temperature there
is a first-order deconfinement transition [30].

We stress that these results are sensitive to the dynam-
ics as they are not in the least enforced by symmetry.
They provide strong support to the dyon scenario of con-
finement. It should be added that instantons with nontriv-
ial holonomy and dyons have been directly observed in
lattice simulations [31].

SUMMARY

What happens in the semiclassical approximation based
on dyons, can be summarized as follows:

• The ensemble of dyons favors dynamically the con-
fining value of the holonomy. This is almost clear,
given that the weight is proportional to the product
of individual actions of fundamental dyons, and it
is maximal when the actions are equal. Such holon-
omy corresponds to the zero of the Polyakov line

• Dyons form a sort of Coulomb plasma (but an ex-
actly solvable variant of it) with an appearance of
the Debye mass both for “electric” and “magnetic”
(dual) photons. The first gives rise to the exponen-
tial fall-off of the correlation of two Polyakov lines,
i.e. to the linear heavy-quark potential, the second
yields the area law for spatial Wilson loops

• O(N2) massless gluons cancel out from the free
energy, and only massive (string?) excitations are
left.

The reason why a semiclassical approximation works
well for strong interactions (where all dimensionless
quantities are, generally speaking, of the order of unity)
is not altogether clear. A possible justification has been
outlined in the Introduction: After UV renormalization
is performed about the classical saddle points and the
scale parameter Λ appears as the result of the dimen-
sional transmutation, further quantum corrections to the
saddle point are a series in the running ’t Hooft coupling
λ whose argument is typically the largest scale in the
theory, in this case max(T,n1/4) where n is the 4d den-
sity of dyons. An estimate shows that the running λ is
between 1/4 at zero temperature and 1/7 or less at crit-
ical temperature. Therefore, although these numbers are



“of the order of unity”, in practical terms they indicate
that high order loop corrections are not too large. Let us
recall that quite an accurate computation of anomalous
dimensions in critical phenomena from the ε-expansion
by Fisher and Wilson [32] is based on truncating the Tay-
lor expansion in ε at the first couple of terms, where ε =1
or sometimes 2 !1

Unfortunately, approximations made in Ref. [2] and
reproduced above are not limited to neglecting higher
loop corrections. We have (i) ignored dyon interac-
tions induced by the small oscillation determinant over
nonzero modes (although we did take into account that it
renormalizes the gauge coupling giving rise to the scale
parameter Λ, and that it leads to the perturbative potential
energy as function of the holonomy), (ii) neglected the
interactions of dyons of opposite duality, treating them
as two noninteracting “liquids”, (iii) conjectured a sim-
ple form of the dyon measure which may be incorrect
when two same-kind dyons come close. Although cer-
tain justification for these approximations can be put for-
ward [2] it is desirable not to use them at all, and that
may be possible.
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