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INTRODUCTION

The N =4 SYM theory provides a possibility to recog-
nize some features of the theories with less amount of
SUSY. While N =4 SYM is far from the QCD-like the-
ories in the infrared because of the lack of confinement
it shares common features in UV region where physics
in asymptotically free theories is described within a per-
turbation theory. That is considering the perturbative ex-
pansion in N =4 SYM coupling constant which does not
run we could try to clarify some generic properties of the
perturbative expansion in the gauge theories.

It is of the prime importance to discover any hidden
symmetries at the high energies or equivalently hidden
integrable structures providing the nontrivial conserva-
tion laws restricting the form of the scattering ampli-
tudes. In the four-dimensional setup the integrability be-
hind the amplitudes is known only at the Regge limit
when the SL(2,C) spin chain gets materialized [1, 2](see
[3] for review).

The simplest objects at generic kinematics are the
MHYV amplitudes which are the perfect starting point for
any discussion since at the planar limit they can be de-
scribed in terms of the single kinematical function. Even
at the tree level MHV amplitudes [4] enjoy some remark-
able properties. They are localized on the complex curves
in the twistor space [5] and can be described as the cor-
relators of chiral bosons on the genus zero Riemann sur-
face [6]. It turns out that the generating function for the
tree MHV amplitudes is just the particular solution to
the self-duality equation in YM theory [9, 10]. It substi-
tutes the naive superposition of the plane waves of the
same chirality in a nonlinear theory. Moreover this solu-
tion provides the symplectic transformation [11](see also
[12]) of the YM theory in the light-cone gauge formula-
tion into the so-called tree MHV Lagrangian formulated
in [8] which to some extend is the analogue of the t’Hooft
effective vertex generated by instantons. However this
approach becomes less clear when going to higher loops.
Indeed, the attempt to formulate the one-loop MHV am-
plitudes in a twistor-like manner was not successful [7]

and certainly calls for additional insights on the problem.

More recently Bern, Dixon and Smirnov (BDS) have
formulated the conjecture [16] that all-loop MHV ampli-
tudes get exponentiated and factorize into IR divergent
and finite parts. Moreover it was conjectured that the fi-
nite part of all-loop amplitude involves only all-loop cusp
anomalous dimension I'c,,(0t) and finite part of one-
loop amplitude. Inspired by this conjecture Alday and
Maldacena have calculated the amplitude at strong cou-
pling regime via minimal surfaces in AdS-type geome-
try with the proper boundary conditions [14]. They have
found unexpected relation between the MHV amplitudes
in planar limit of N =4 SYM theory and Wilson poly-
gons in the momentum space.

The Wilson polygon-amplitude duality refreshes the
problem but deserves for the explanation itself. It was
originally formulated at strong coupling when the Wilson
loop is calculated in terms of minimal surface in the AdSs
geometry upon a kind of T-duality transform. Later it was
shown that duality holds true at the perturbative regime
as well [19] which puts it on more firm ground. The im-
portant point was the formulation of the anomalous Ward
identities for the special conformal transformations with
respect to the dual conformal group. It fixes the kine-
matical dependence of the amplitudes up to five external
legs [19]. However Ward identities tell nothing about the
functional form of the amplitudes starting from six ex-
ternal legs. Recently the dual superconformal group was
identified as the symmetry of the worldsheet theory of
the superstring in AdSs x > geometry [38, 39].

Finally it was recognized that BDS anzatz fails at weak
coupling at two loop level for six external legs [15, 18]
and at strong coupling for infinitely large number of
external legs. Moreover the BDS anzatz seems not fit
well with the Regge limit [41]. On the other hand at two
loop level the duality between Wilson polygon and MHV
amplitude survives.

There are a lot of pressing questions to be answered.
Just mention a few;

+ Is there some geometrical picture behind the BDS
anzatz which would suggest the way of its necessary



generalization?

« Is there the generalization of the dual conformal
Ward identity which would fix the functional form
of the one-loop amplitude for any number of exter-
nal legs?

« Is there the fermionic representation for the loop
amplitudes which would imply the hidden integra-
bility?

+ What is the origin of the Wilson polygon - ampli-
tude duality ?

« Is there clear geometrical picture behind the
reggeization of the gluon?

To some extend we shall try to generalize the geomet-
rical picture for the tree amplitudes suggested in [5]. At
the tree level in [5] the Euclidean D1 "instanton" branes
with the attached open strings have been considered in
the twistor space. The D1 brane is localized at the point
in the Minkowski space in agreement with the local-
ity of the vertex generating tree MHV amplitude in the
MHV formalism. To describe the loop amplitudes we
shall adopt a little bit different picture and consider C*
manifold in the B model as a "twistor-like" manifold
for the complexified Minkowski space. The D3 branes
substitute "D1 instantons" and are embedded in C*. The
somewhat similar objects were also introduced as the IR
regulator branes in the Alday-Maldacena calculation. In-
deed, it was shown [14] that dilaton field gets changed
upon the T-duality in the RG radial coordinate which
means that D-instanton is added to the background. Af-
ter the Fourier transform along flat four-dimensions D-
instanton gets transformed into the D3 brane we shall
work with. The Wilson polygon which corresponds to
the boundary of the string worldsheet and is presumably
dual to the amplitude is located just on these IR regulator
branes. Contrary to the previous considerations the posi-
tions of the regulator branes are not free but determined
dynamically in terms of the cross-ratios of the external
momenta.

The physics of the scattering at the loop level can be
treated from the different perspectives. From the point of
view of the KS gravity on the moduli space we are cal-
culating the correlator of the fermions or the fermionic
currents which can be identified with the tau-function of
the 2d integrable system. The second viewpoint concerns
the 4d gauge theory on the regulator branes whose num-
ber is fixed by the number of external particles. Finally
one could consider the worldsheet viewpoint where the
regulator branes provide the proper boundary conditions
for the string. These viewpoints are complimentary and
allow to check the self-consistency of our approach.

Within the KS perspective we shall discuss the
fermionic representation behind the loop MHV am-
plitudes which would generalize the Nair’s fermionic

representation for the tree amplitudes. The fermionic
picture is a heart of the integrability which admits the
representation in terms of the chiral fermions on the
Riemann surface in the external gauge field. The gauge
field on the Riemann surface represents the "point of
Grassmanian" or in physical terms the particular Bo-
golyubov transformation between the fermionic vacua.
This approach was summarized in [23]. It was argued
that fermions in the KS gravity correspond to mirror of
Lagrangian branes in the A model. These branes are also
refereed to as Kontsevich or noncompact branes and
their positions on the Riemann surface yield the "times"
in the corresponding integrable systems. Note that in
the framework of the topological strings in A-model
we discuss the Kahler geometry while in B-model the
complex geometry is captured by the KS [13] theory.
The fermion one-point function corresponds to the
Baker-Akhiezer function in the integrable system frame-
work and to the single regulator brane insertion at some
point on the moduli space. Since generically we are inter-
ested in the quantum integrable system the Riemann sur-
face gets quantized and yields the corresponding Baxter
equation [26]. The semiclassical solutions to the Baxter
equation which are the generating functions for the La-
grangian sub-manifolds in the particular integrable sys-
tem play important role in the analysis. They serve as the
building blocks for the correlators in the N =4 YM the-
ory and can be considered as the "semiclassical D3 brane
wave function" or as the effective action in the 4d gauge
theory on the brane worldvolume. From the moduli space
viewpoint the solution to the Baxter equation provides
the generating function of the Lagrangian sub-manifold.
The natural integrable system on the moduli space can be
identified with the 3-KP system however similar to the
N=2 SYM one could expect the pair of integrable system
- 2D field theory and finite dimensional one. The natural
finite dimensional integrable system which is responsi-
ble for the hidden symmetries at the generic kinematics
is conjectured to be related to the Faddeev-Volkov model
[32] and the corresponding statistical model [31] based
on the discrete quantum conformal transformations.
Since we are trying to sum the perturbation series the
YM coupling constant is expected to be involved into
some algebraic structure behind the all-loop answer. It
is this hidden symmetry which provides the choice of
the particular solution to the Yang-Baxter equation. The
Faddeev-Volkov solution to the Yang-Baxter implies that
we are actually trying to relate the YM coupling constant
with the parameter g of U, (SL(2,R)). The proper identi-
fication turns out to be nontrivial problem since in partic-
ular it has to respect the S-duality group in N=4 theory.
It will be argued that the BDS anzatz corresponds to the
limit ¢ — 1 while the Regge limit seems to be related
to the opposite "strong coupling regime" of the quantum

group.



The consideration of the four-dimensional theories on
the regulator brane worldvolume is useful as well. The
theory is in the Coulomb phase and the position of the
regulator brane on the particular Riemann surface corre-
sponds to the coordinate on the Coulomb moduli space.
Since all regulator D3 branes are at different positions
on the moduli space the theory generically has the gauge
group U (1)* where k is related to the number of the ex-
ternal gluons . The effective action of each U(1) gauge
theory plays the role of the wave function of the two-
dimensional fermions in KS gravity. A little bit surpris-
ingly one has to consider not the real part of the effective
action in the external field but the imaginary one involv-
ing dilogarithm. This is natural from the Euclidean view-
point while in the Minkowski space we actually consider
the probability of the pair production.

It is important to discuss separately the special Regge
kinematical region were the hidden symmetries of the
amplitudes where found for the first time. The hidden
symmetries were captured at one loop by the SL(2,C)
spin chains [1, 2]. It was shown in [35] that the N-
reggeon dynamics belongs to the same universality class
as conformal N=2 SQCD with Ny = 2N at the strong
coupling orbifold point. We shall argue that the brane
geometry in the reggeon case is similar to the one in
SQCD which provides the qualitative explanation of the
same universality class for both theories. The new object
is the open string stretched between two regulator branes
and is the analogue of the massive vector bosons in
the conventional N=2 SYM theory. Here we shall tempt
to interpret these open strings as the "reggeons". The
masses of these effective degrees of freedom correspond
to the differences of the positions of the regulator branes
on the Riemann surface.

THE LOOP RESULTS FOR THE MHV
AMPLITUDES

Let us remind the main results concerning the loop MHV
amplitudes. The MHV gluon amplitudes involve two
gluons of the negative chiralities and the rest of gluons
have positive chiralities. Consider the ratio of all-loop
and tree answers. The following form of the all-loop
amplitudes has been suggested in [16]

Maii=100
log( aMl ((!’) — (Fdiv +Fcusp(7\t)Monefloop) (1)
ree

which involves only the all-loop answer for the cusp
anomaly I'c,, and one-loop MHV amplitude. The IR
divergent part F;, gets factorized in the all-loop answer.
The cusp anomaly measures UV behavior of the contour
with cusp [24]. Recently the closed integral equation has

been found for the cusp anomalous dimension in N = 4
SYM theory [40] which correctly reproduces the weak
and strong coupling expansions.

The finite part of the one-loop MHV which presum-
ably defines the all-loop answer can be written in terms
of the finite part of the so-called two-mass easy box func-
tion F2¢" [34]

Monefloop,finite = ZFZem,f(p7 q, P, Q) 2
pq

This function can be expressed in terms of the diloga-
rithms only

F?™I(p,q,P,Q) = Lir(1—aP*)+Lir(1—aQ?) — Lix(1—a(g+P)*) —

3)

where

_ PP+ Q*—(q+P)’—(p+P)?
P2Q*—(qg+P)*(q+P)?

and p+ g+ P+ Q = 0. One more expression for the

function F2"/ which will be useful later can be written

in terms of the variables x;; = p; — pi in terms of the
sums [19]
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where
Xi = piy1 — Pi (6)

Since all external momenta are on the mass shell the
arguments of dilogarithms are expressed in terms of the
cross-ratios of the scalar products of the momenta only.

The BDS anzatz (1) has been checked at weak and
strong coupling regimes. At strong coupling analyzed in
the stringy setup [14] one considers first the T-duality
transformation on the worldsheet which effectively in-
terchanges UV and IR regions in the AdSs geometry.
Then the calculation of the amplitude reduces to the cal-
culation of the minimal surface in the dual AdS space
bounded by the polygon formed by the external on-shell
gluon momenta. For the four external legs the answer fits
with the BDS anzatz for all-loop amplitude.

It was conjectured in [14] that any MHV N-leg ampli-
tude follows from the vacuum expectation value of the
Wilson loop of the special form

Mall—loop

jY; =<W(p1,p2,--sPN) > @)
tree

where the closed Wilson loop polygon has light-like
momenta at the edges and vertexes at x;. Its closeness
is provided by the total momentum conservation.

At weak coupling to check this polygon-amplitude du-
ality one considers the expansion of the Wilson polygon



in the YM coupling treating Wilson loop as one in the
coordinate space. The perfect matching of Wilson loop
and amplitudes has been found for one- and two loop an-
swers up to six external legs [15, 18]. Moreover it was
demonstrated that the anomalous Ward identities for the
special conformal transformations of the form

1
—x2Y )W (x1,...xy) =

™-

KW (x1,...xy) =Y (2x) x;0;

i=1

(®)
fix the answer up to four external legs [21]. The BDS
anzatz has to be modified for generic amplitude while the
Wilson polygon-MHV amplitude duality has the chance
to be all-loop exact.

FINITE PART OF N=4 SYM MHV
AMPLITUDES AND MOMENTUM
SPACE GEOMETRY

Fermionic picture

Let us now consider the four-dimensional case and for-
mulate our proposal for finite part of the MHV loop am-
plitudes. Remind that the tree amplitudes were described
in terms of the D1 string instanton embedded into the
twistor manifold [5]. The instanton is localized at point
in the Minkowski space and open strings representing
gluons are attached to it. To describe the loop amplitude
we shall substitute D1 brane by the IR regulator branes
embedded into the proper manifold. The gluons are at-
tached to the regulator branes whose embedding coordi-
nates are considered as dynamical degrees of freedom.
Contrary to tree case regulator branes are localized at the
sub-manifold of the complexified Minkowski space.

The starting point is the representation of the N=4 the-
ory via geometrical engineering [22] as the ITA super-
string compactified on the three-dimensional Calabi-Yau
manifold which was identified as the K3 x T2 geome-
try in the singular limit. One has to consider the singular
limit of K3 manifold when it develops Ay_; singularity,
where N becomes the rank of the gauge group, and upon
blowing up procedure it can be represented as ALEy ge-
ometry. On the other hand the Kahler class of the T2 can
be identified with the coupling constant

Area(T?) =1/giu )

At weak coupling the torus is large and can be approxi-
mated by the complex plane. That is the geometry can be
roughly approximated by C* upon the particular blow-
ups.

As we have seen the one-loop answer for the MHV
amplitude determining the BDS form of the amplitude
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involves the sum of the dilogarithms depending on the
cross-ratios of the x; variables. Below we shall try to
explain how such functions with cross-ratio arguments
emerge naturally both in A-model and B-model frame-
works. As is well-known the A-model captures the infor-
mation about the Kahler moduli while the B-model about
the complex moduli and we shall see where these mod-
uli comss from. The brane description of the scattering

M1tud€¥ngplves the set of the Lagrangian branes in

Axm@dpi and the corresponding B-model branes. It
is these branes which provide the corresponding moduli
spaces.

Let us interpret the BDS anzatz in terms of the cor-
relator of the noncompact Euclidean D3 branes embed-
ded into the four dimensional complex space. Consider
3d complex manifold which is mirror to the topological
vertex [29]. This manifold classically is described by the
equation in the C* with coordinates x, y, u, v

xy=ée"+e" +1 (10)

At the discriminant locus it defines the Riemann surface
Hvu)=e¢"+¢"+1=0 (11)

of genus zero with three different asymptotic regions.
We shall argue that the loop MHV amplitudes can be
identified with the fermionic correlators on the Riemann
surface (11). Fermions on the surface (11) represent the
degrees of freedom in the KS gravity that is the IR
regulator D3 branes imbedded into C* geometry.

There are two D3 branes defined by the equations

x=0 Hu) =0 (12)

and
y=0 Hu)=0 (13)

which intersect along the Riemann surface. The inter-
secting branes provide the natural fermionic degrees of
freedom on the intersection surface from the open strings
stretched between these branes. The fermions are in ex-
ternal field amounted from the worldvolume gauge con-
nection on the intersecting branes. In addition to two
branes intersecting along the Riemann surface we intro-
duce the set of Kontsevich -like branes classically local-
ized at the points (v;,u;) at the Riemann surface. The
number of such branes is fixed by the number of the
external gluons and the coordinates of these branes on
the surface are defined by some particular cross-ratios.
At quantum level D3 branes are extended along the La-
grangian submanifold in the (u,v) space. The cross-ratios
are the natural coordinates on the moduli space of the
punctured spheres that is the (u,v) space is related to the
T*My 4.

At the next step the Riemann surface gets quantized
and the branes-fermions should obey the equation of the



quantum Riemann surface that is Baxter equation which
provides the wave functions depending on the separated
variables. The Baxter equation in our problem reads as

(" +¢"+1)Q(v) =0 (14)

Its solution turns out to be the quantum dilogarithm [23].
Note that the solution to the Baxter equation in our case
can not be presented in the polynomial form that is we
have infinite number of the Bethe roots.

To get the MHV all-loop amplitude in the BDS form
we take the semiclassical limit of the fermionic correlator
on this surface. Indeed using the semiclassical limit for
the quantum dilogarithm we can represent the four-point
fermionic correlator as

<P(21)P(22)¥(23)¥(24) >o< exp(h ' (Lin(z3) +Liz(24) —Liéﬁﬁslor:)ﬁlit’?%ﬁ
(15)

This expression exactly coincides with the expression for
the contribution of the single 2-easy mass box diagram
hence upon the identification of the Planck constant

B = Tousp(A) (16)

we reproduce BDS anzatz for the finite part of the am-
plitude. Indeed the one-loop answer for the MHV am-
plitude can be expressed purely in terms of the sum of
2-mass easy box diagrams with different grouping of the
gluon momenta and therefore in terms of the fermionic
correlators.

Since the regulator brane ( DI "instanton") yield-
ing the tree amplitude is localized in the complexified
Minkowski space M€ [5] one could ask about similar lo-
calization of regulator branes responsible for the higher
loop calculations. To this aim recall that M€ is equiva-
lent to the Grassmanian Gr(2,4). On the other hand the
factor of the Grassmanian by the maximal torus action is
related to the compactified moduli space [43]

Gr(2,4)//T =My (17)

This representation allows us to represent the complex-
ified Minkowski space itself as the fancy divisor of the
Mo .4 [42]. We suggest that this realization implies the lo-
calization of the regulator branes on the submanifold of
T*(M€//T). 1t is natural to identify this manifold with
the Riemann surface where the KS degrees of freedom
live.

Let us present the qualitative argument concerning
the corresponding A-model picture. In the A-model we
introduce the set of Lagrangian branes with topology
S! x R%. The emergence of the dilogarithm as the wave
function of the Lagrangian brane has been discovered in
the C* geometry in [30]. The brane/asntibrane can be
considered as the insertion of the fermion/antifermion
[30] in the fermionic representation of the topological
vertex picture [29].

The regulator brane worldvolume theory

Since fermions in KS framework are identified as the
D3 regulator branes the natural question concerns their
four-dimensional worldvolume theory. The theory on the
regulator branes share many features with N=2 and N=1
SYM low-energy sectors. The number of the regulator
branes is fixed by the number of the external gluons so
naively one could expect a kind of SU(K) gauge theory.
The worldsheet theory on the regulator branes enjoys the
complex scalar corresponding to the complex coordinate
z of the brane on the Riemann surface (11). This is
similar to the situation when the vev of the scalar field
corresponds to the position of the D4 branes on the a-
plane in the ITA realization of the N=2 SYM theory [49].
%iiferent regulator branes are at the differ-

e Riemann surface we can speak about
the Coulomb branch of the regulator worldvolume the-
ory. However their positions on the Riemann surface are
fixed that is we could say about the localization of the
D3 branes on the points of the moduli space Mo 4. Sim-
ilar to the N=1 SYM theory when branes are localized
at positions corresponding to the discrete vacua the D3
regulator branes are localized at some points parameter-
ized by the cross-ratios. These points correspond to the
local rapidities in the framework of integrability and si-
multaneously have to correspond to the minima of the
effective superpotentials W, /(z;) in the regulator world-
volume theory.

Since we attributed dilogarithms to the regulator brane
wave functions it is necessary to explain where they
come from in the worldvolume theory. The qualitative
arguments looks as follows. In the worldvolume theory
there are massive excitations corresponding to the open
strings stretched between two regulator branes. They are
analogue of the massive W-bosons in N=1 SYM theory
on the Coulomb branch. In our case the masses of these
particles are related to the cross-ratios. To recover the
dilog let us remind that usually in the external field the
effective action develops the imaginary part correspond-
ing to the pair creation. The probability of the pair cre-
ation on the external field is described by the classical
trajectory in the Euclidean space and in the leading ap-
proximation reads as

n12

ImSeppoc e <€ (18)

for a particle of the mass m in the external field E.
Upon taking into account the multiple wrapping and
the quadratic fluctuations one gets for the scalar particle
Schwinger pair production

_ nm?

1
Imwxzﬁeﬁ (19)
n



that is dilog plays the role of the decay probability.
Hence one can say that we are considering the Euclidean
version of the regulator worldvolume theory and the
amplitude from this viewpoint is described via bounce
type configuration corresponding to the creation of the
pairs of the effective massive degrees of freedom. Note
that the real part of the effective action corresponds to
the summation over the loops of the same degrees of
freedom in the loops.

In the A-model one can similarly consider the world-
volume theory on the D2 Lagrangian regulator branes. In
this case the corresponding dilog functions emerge upon
summation over the disc instantons with boundaries lo-
cated at the corresponding Lagrangian branes which pro-
vide the effective superpotential in the worldvolume the-

ory
dy _
Werpoc}, 3¢ ™ (20)
n

where A -is the corresponding area of the target disc.
Note that in the A model D2 branes wrapped around the
ideal tetrahedrons whose Kahler classes are defined by
the cross-ratios provide the masses of the same effective
"W-bosons" as in B-model.

Let us comment on the identification of the Planck
constant providing the quantization of the KS gravity
as the inverse cusp anomalous dimension inspired by
the BDS anzatz. At the first glance it looks completely
groundless however the argument supporting this iden-
tification goes as follows. The emergence of the cusp
anomaly in the exponent means from the worldsheet
viewpoint that it plays the role of the effective string ten-
sion or equivalently the inverse Planck constant. Such ef-
fective tension emerges if one considers the string whose
boundary is extended along the light-like contours. It was
shown [17] that in the limit suggested in [44] the string
worldsheet action can be identified with O(6) sigma
model and the energy of the ground state in O(6) model
is proportional to the length of the string multiplied by
the T'cysp(0t). That is indeed I'ysp(r) plays the role of
the effective tension of the string in this special kinemat-
ics. Since in our case the boundary of the string world-
sheet lies on the Wilson polygon the effective tension in-
volving the cusp anomalous dimension is natural.

However certainly this point is far from being clarified.
For instance in the Ward identity for the special confor-
mal transformation I'¢, enters as the multiplier in the
anomalous contribution. This claim has been explicitly
checked at the first loops in the gauge theory calcula-
tions and the arguments that it holds true at all orders
have been presented. This means that in the anomalous
Ward identity it plays the role of the Planck constant not
the inverse one. To match both arguments we could sug-
gest that in the Ward identity we are considering the S-

dual formulation and therefore the D1 string worldsheet
action instead of the F1 one in O(6) sigma model. This
would imply that the Wilson polygon equivalent to the
MHYV amplitude could be considered as the boundary of
the D1 string as well.

In more general setup it is highly desirable to realize
the meaning of the relation of such type in the first quan-
tized language. Since the cusp anomalous dimension is
just the renormalization factor for the self-crossing of the
worldline it is very interesting to understand if such self-
crossing is involved into the quantization issue. In partic-
ular in the Ising model the effect of the self-crossing is
captured by the topological term and in the description
of the topological string on C? somewhat similar 6 term
in six dimensions plays the role of the quantization pa-
rameter indeed [28]. In the gauge theory language such
objects are related to the renormalization of the double-
trace operators couplings.

INTEGRABILITY BEHIND THE
SCATTERING AMPLITUDES

General remarks

In this Section we shall discuss the hidden integra-
bility behind the scattering amplitudes and present the
arguments that similarly to the integrability pattern be-
hind effective actions in N=2 SYM theory two integrable
systems are involved. The degrees of freedom of both
integrable systems are related to the coordinates of the
regulator branes. One of these systems which we iden-
tify as the Whitham-like 3-KP one plays the role of RG
flows in the regulator brane worldsheet theory or equiv-
alently the motion of the regulator brane along the "ra-
dial" RG-coordinate. The second integrable system gen-
eralizing the Hitchin-like or spin chain models involves
the effective interactions between the regulator branes.
We shall give arguments that this system is based on the
Faddeev-Volkov solution to the Yang-Baxter equation for
the infinite-dimensional representations of the noncom-
pact SL(2,R) group.

Recall how two integrable systems are involved into
the description of the low energy effective actions of N=2
SYM theories. The first finite dimensional system is of
the Hitchin or spin chain type and its complex Liouville
tori are identified with the Seiberg-Witten curves. This
spectral curve emerges in the gauge theory upon the
summation over the infinite number of instantons [36].

Following [25] one can canonically define the dual in-
tegrable system whose phase space is built on the inte-
grals of the motion of the first one. In the simplest case
of SU(2) theory the phase space for the dual system has



the symplectic structure [45]
o =daANdap 2n

where the variables (a,ap) are the standard variables in
N=2 SYM framework [48]. The prepotential .# can be
identified with the generating function of the Lagrangian
sub-manifold in the dual system with the a,ap phase
space

0F
H =)= 22
(a(w), %)) = u @)
and obeys the Hamilton-Jacobi equation
0.F
—_— = 23
dlogA 23)

In the brane setup the prepotential defines the semi-
classical "wave function" of the D4 brane W¥(a) o<
exp(h~1.% (a)) in the TIA brane picture where perturba-
tively the argument of the wave function can be identified
with coordinate of the D4 brane on the NS5 brane. The
total perturbative prepotential in SU(N,) can be consid-
ered as a sum of the exponential factors in the product
of the wave functions of N. D4 branes. In the A-model
side these wave functions can be considered in the Kahler
gravity framework and the arguments of the wave func-
tion have to be treated as the Kahler classes of the blow-
upped spheres.

The integrals of motion provide the moduli space of
the complex structures in the Calabi-Yau geometry in the
B model hence we are precisely in the KS framework. In
this B-model formulation we consider the argument of
the brane wave function as the coordinate on the moduli
space of the complex structures. The dual Whitham-type
integrable system naturally defines the t-function of the
2d Toda theory formulated in terms of the chiral fermions
on the Riemann surface with two marked points.

3-KP system

Let us turn to the integrable structure relevant for
the scattering amplitudes at generic kinematics and first
identify the degrees of freedom and evolution "times".
As we have described above the fermionic degrees of
freedom correspond to the noncompact branes localized
on the Riemann surface. The two-dimensional field the-
ory corresponds to the reduction of the KS theory on the
two-dimensional surface. The fields on the surface are in
the external abelian connection of the Berry type which
tells how the B- branes transform under the change of
the complex structure fixed by the momenta of external
particles.

The form of the Riemann surface H(u,v) = 0 dictates
that there are three infinities and therefore we are dealing

with the particular solution to 3-KP integrable system.
To describe the integrable system it is convenient to
introduce the chiral fermions with the following mode
expansion
‘ —n—1 ‘ —n—1
V) =YW W) =YW "
n n
(24)
around the i-th infinity, i = 1,2,3 and the commutation
relations

{ersz;:/} = 8ijanrm,() (25)

Defining the vacuum state by relations

Va[0>=0, y|0>=0, n>0 (26)

the generic state |V > can be presented in the form

V>= exP(ZZaizj;n‘lfi_nq/z\lfiim_uz)‘o > (27

i,j n,m

where the point of Grassmanian representing the topo-
logical vertex was derived in [23].

Hence we can define the classical © function of the 3-
KP system we are working with

T(Ti) =< t|¥(z1).... % (zx) |V > (28)

It is this tau-function of the 3-KP system that plays the
role of the generating function for the MHV amplitudes.
In fact the semiclassical limit of the tau-function is of the
most interest when we consider the classical Riemann
surface before any quantization. In the semiclassical ap-
proximation we can safely consider the differential

dS = vdu (29)
which yields the semiclassical brane wave function
X
W5 o exp(—hil/ v(u)du) (30)
involving the dilogs. The tau-function obeys the 3-KP

equation and there are the additional Wy ., Ward identity
written in terms of the fermions

Fu ey )+ (17 Pt eI+ Py () (s) =0

N

(€29)
where the sum over three asymptotic regions is consid-
ered.

The quantization of the system can be done most ef-
fectively in terms of the Baxter equation. The Baxter
equation implies that the regulator branes are localized
on the surface. Hence the whole set of the equations de-
termining amplitudes involve the dual conformal trans-
formations on the regulator worldvolume and the set of
Ward identities for the coordinate of regulator brane in
the transverse moduli space. It is these Ward identities



which fix the dependence of the amplitude on the con-
formal invariants for large number of external legs.

The precise higher Hamiltonians from Wy ., respon-
sible for the higher conservation laws in the scattering
amplitude problem can be written as the fermionic bilin-
ears [23]. Generically as was discussed in [23] one has
some unbroken part of W., which annulate the T-function
corresponding to the topological vertex and therefore the
scattering amplitude in the form of BDS anzatz.

On the Faddeev-Volkov model

Let us turn now to the description of the second inte-
grable system representing the particular solitonic sector
of the infinite-dimensional integrable system. We shall
conjecture that the integrable system at the generic kine-
matics is the generalization of the SL(2,C) spin chain rel-
evant for the Regge limit of the amplitudes.

The finite-dimensional integrable systems can be usu-
ally defined in terms of the R-matrix. The Faddeev-
Volkov model is defined via the Drinfeld solution to the
Yang-Baxter equation which provides the universal R-
matrix acting on U, (SL(2,R)) ® U,;(SL(2,R)). The cor-
responding statistical model describes the discrete quan-
tum Liouville theory [31] with the following partition
function

z= / TTWo-o(Si—SHTTWpa(Sk— SO TTdS: 32)
ij ki i

where the Boltzmann weights depend only on the differ-
ences of the spins Sy at the neighbor cites and rapidity
variables at the ends of the edge. The first product is over
the horizontal edges(i,j) while the second product is over
the vertical edges (k,1). The integral is over all internal
spin degrees of freedom. In the fundamental R-matrix
the cross-ratios of the relative rapidities of the particles
play the role of the local inhomogeneities in the lattice
model and Boltzmann weights are defined as [31]

_leznesqj(5+ lee/TC)

Y(s—ic,0/m)
where spin s and local rapidity variables 8 are combined
together in the argument of the function

1 e*Z’de
qu(z) = exp(z / xsinh(bx)sin/’l(bflx)) (34)

¢y = 1/2(b+b7") and F(0) is normalization factor.
The relative importance of the spin variables and the
local inhomogeneities depends on the value of the YM
coupling constant and the kinematical region.

Semiclassically when b — 0 the spin variables are
frozen and the Boltzmann weight behaves as

A®lp)
21b?

We(s)=F(6) (33)

Wo (p/2mb)) = exp(—

+.) (39

where
A(0|p) = iLir(—eP~®) —iLip(—eP™®)  (36)

The extremization of the semiclassical action yields the
Bethe Anzatz type equations connecting the dynamical
spin variables with the local rapidities

ePi 4 Pt Oij |
Hepj +epi+9ij -

i

(37

The Regge limit is described in terms of the SL(2,C)
spin chains when the number of sites in the chain cor-
responds to the number of reggeons. The possible limit
which could yield such spin chain from the Faddeev-
Volkov model or statistical model [31] looks as fol-
lows. In the model [31] the statistical weights depend
on the sum of the local rapidities and the spin vari-
ables. It is clear that one can not expect the quasiclassical
limit of the quantum dilogarithm to be relevant since the
reggeization of the gluon happens upon the nontrivial re-
summation of the perturbation series.

Fortunately there is the limit [31] corresponding to
the strong coupling region in the Liouville theory when
the quantum dilogarithms reduce to the ratio of Gamma
functions depending on the SL(2,R) spin variables

(1 —s+ix/2)

I(1—s—ix/2) (38)

‘I‘Cb*?()(s +nx) o<

where |b| = 1 . The leading argument depends on the
difference of two infinite-dimensional representations in
the neighbor sites and the expression coincides with the
fundamental R-matrix involved into the SL(2,R) spin
chains. That is in this particular limit we get the statistical
weights or R-matrixes depending only on the SL(2,R)
spins similar to the BFKL-type Hamiltonian [47] while
the local rapidity yields the "time" variable logs. Note
that clearly this suggestive argument need for further
clarification.

CONCLUSION

We have suggested the relation between the loop MHV
amplitudes and the KS gravity in the momentum space
which allows us to recover the relevant integrability pat-
tern. The key idea is that the scattering of the particles
induces the back-reaction on the geometry of the mo-
mentum space through the nontrivial dynamics on the
emerging moduli space. That is one can say that the tree
amplitude is dressed by the gravitational degrees of free-
dom which can be treated within the Kahler gravity in the
A type geometry or KS gravity in the type B model. They
are identified with the coordinates of Lagrangian branes
in the A model or the corresponding noncompact branes



in the B model. On the field theory side the four-fermion
correlator on the moduli space is identified with the two-
mass easy box amplitude which is the basic block in the
whole answer.

The BDS anzatz corresponds to the semiclassical limit
in the KS gravity and I, has to be identified with
the inverse Planck constant in KS gravity. There are
several natural generalizations of the BDS anzatz. First
one could imagine that the quantization parameter can
be generalized to more complicated function than cusp
anomalous dimension respecting the S-duality of N=4
theory. The next evident point concerns the full quan-
tum theory in the KS framework which effectively sub-
stitutes the dilogarithm function in the BDS anzatz by
the quantum dilogarithm. However these modifications
do not produce higher polylogaritms which are known
to appear in higher loop calculations of the amplitudes
and Wilson polygons. The most natural way to get higher
polylogarithms in our picture is to consider the nontriv-
ial Feynman diagrams in the two-dimensional KS theory
probably involving loops. Indeed increasing the number
of vertexes in the KS tree diagrams we increase the tran-
cendentality of the answer. We expect that all mentioned
generalizations are necessary to get the correct all-loop
answer.

We have identified the most natural integrable struc-
ture behind the scattering amplitudes which are consid-
ered as a kind of the "wave functions" in the particular
model. The KS gravity in our case naturally involves
the 3-KP hierarchy and the role of the "time" variables
are played by the combination of the conformal cross-
ratios. The second finite-dimensional integrable system
is conjectured to be related to the Faddeev-Volkov model
however this point deserves for further investigation. The
integrability is responsible for the conservation laws in
addition to the dual superconformal symmetry. The rel-
evant Ward identities correspond to the area preserving
symplectomorphysms of the spectral curve.

The additional IR regulator branes added into the pic-
ture are responsible for the blow up of the internal mo-
mentum space in the manner dictated by the scattering
process. The blow up of the internal geometry physically
corresponds to the IR regularization of the field theory
and the anomaly in the transformations in the momen-
tum space tells that the regularization does not decouple
completely. This a little bit surprising picture implies that
we have to take into account the dynamics of the regula-
tor degrees of freedom as well. Naively they are treated
semiclassically but generically the fermions representing
the regulator branes obey the quantum Baxter equation.

One of the most inspiring findings is the appearance
of the hidden "new massive degree of freedom". They
correspond on the A model side to the D2 brane wrapped
around the 2-cycle created by the scattering states or the
open string stretched between two IR regulator branes in

the B model. It is somewhat similar to the W-boson state
however its mass is fixed by the kinematical invariants of
the scattering particles. In the Regge limit we anticipate
its important role in the Reggeon field theory.

In is evident that the results of this paper are qualita-
tive in many respects and represent only part of the whole
picture. In particular the clear understanding of the am-
plitudes of the gluon scattering with generic chiralities is
absent and our proposal for the improvement of the BDS
anzatz deserves for the further evidences. Nevertheless
we believe that the dual picture we have suggested is the
useful step towards the clarification of the scattering ge-
ometry responsible for the summation of the perturbative
series in YM theory.
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