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Abstract. Temperature and entropy of black holes are discussed. The maximum entropy of a quantized surface is demon-
strated to be proportional to the surface area in the classical limit. The general structure of the quantum spectrum of a black
hole horizon is found. The discrete spectrum of thermal radiation of a black hole fits the Wien profile. The natural widths of
the lines are much smaller than their separation.
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TEMPERATURE OF BLACK HOLES

Long ago, in 1971, J. Wheeler realized that the classical
description of black holes is incomplete in principle. His
line of reasoning looked as follows. Let us take a box
filled with the black body radiation at some temperature
T . Obviously it possesses a finite entropy as well. We
drop the box into a black hole. Then the entropy of
the observable part of the universe decreases forever.
But this is an explicit violation of the second law of
thermodynamics! To save the second law, Bekenstein
suggested [1] that the black hole itself has some entropy
which increases when the box is absorbed. Then it is
only natural to ascribe some finite temperature as well
to a system with a finite entropy. This conclusion is quite
natural from a somewhat different point of view. A black
hole is an ideal absorber, an absolutely black body, for
which the temperature is a quite natural property.

Let us try at first to estimate this temperature just by
dimensional arguments. The classical parameters at our
disposal, the Newton gravitational constant k, the mass
M of black hole, and the speed of light c, are insufficient
for the purpose (Mc2 is too large, and does not contain
k). But there is the Planck constant h̄. With it one can
easily construct the necessary combination: the black
hole temperature is on the order of magnitude h̄c3/(kM).

To derive the numerical factor in the relation T ∼
h̄c3/(kM), we consider the following problem [2]. Let
a semiclassical wave packet of a massless field propa-
gate from a point r0 = rg + ε close to the horizon of a
black hole with mass M (rg = 2kM/c2 is the horizon ra-
dius) to a distant point r. A straightforward (but rather
tedious) calculation demonstrates that, independently of
the initial spectrum of the wave packet, at infinity it is
completely universal:

| f (ω)|2 ∼ exp (−8πkMω/c3) . (1)

If one goes over in it from the frequency ω to the energy
h̄ω , it corresponds to the Boltzmann distribution with the

temperature

T = h̄c/(4πrg) = h̄c3/(8πkM) . (2)

This expression for the black hole temperature was ob-
tained by S. Hawking [3].

RADIATION OF BLACK HOLES

The inevitable result of the finite temperature T of a
black hole is the conclusion that in fact it radiates. Black
hole produces not only photons and neutrinos with en-
ergies on the order of T , but particles of non-vanishing
rest mass m as well (only if its temperature is sufficiently
high). Thus, one of the most amazing properties of black
holes is that they shine!

V.N. Gribov was the first who made this conclusion1.
His argument was as follows. The uncertainty relation
∆E∆t ≥ h̄ allows the creation of pairs of particles from
vacuum for the time t that does not exceed h̄/E; here
E is the total energy of the pair (E ≥ 2mc2 for massive
particles). The gravitational field near the horizon is very
strong, so that the energy conservation by itself allows
one of the particles to be absorbed by the black hole, and
the second one to go to infinity. In quantum mechanics,
due to the tunneling effect of such a sort, the processes
of particle creation become possible. One can recall in
this connection the creation of electron-positron pairs in
strong electric fields.

Contrary to naïve expectations, the radiation of black
holes is not described by the common Planck and Fermi

1 Gribov precisely formulated the statement that black holes radiate in
discussions taking place in 1971 or 1972. This was told to me inde-
pendently by A.D. Dolgov, D.I. Diakonov, L.B. Okun’, who had been
present at those discussions. Unfortunately, Gribov did not publish this
result, perhaps he considered it self-evident. In 1974 radiation of black
holes was predicted independently by S. Hawking [3].



distributions. Indeed, these distributions are valid only
if the size of a radiating body is much larger than the
typical wave lengths, i.e. in the semiclassical limit. Let us
recall the common model of an absolutely black body: an
opening in a cavity filled with radiation [4] (we talk here
about photons, but these arguments apply to particles
of any spin). Obviously, the radiation of wave lengths
large as compared to the size of the opening is strongly
suppressed. So, the common temperature distributions
apply only under the condition ωa À 1, where a is the
typical size of a radiating body.

For a black hole, however, the typical frequencies are
ω ∼ (4πrg)−1 (see (1)), and the size of radiating body a
is rg. Thus, here

ωa∼ 1/(4π)¿ 1 . (3)

As a result, the black body radiation differs essentially
from the common thermal one. In particular, due to the
centrifugal effect, at ωrg ∼ 1/(4π) ¿ 1, the density of
a partial wave of radiated field near the horizon, and
therefore the radiation intensity in this wave, falls down
rapidly with the growth of the total angular momentum j.
The results of numerical solution of wave equations for
particles of different spins in the field of a black hole [5]
confirm this qualitative conclusion. The total radiation
intensities for (ultrarelativistic) electrons ( jmin = 1/2),
photons ( jmin = 1), and gravitons ( jmin = 2) are related
as 22:9:1. On the other hand, the ratios of the radiation
intensities in the waves with j = jmin and j = jmin + 1
(corresponding to a single value of the projection jz, i.e.
without the weight (2 j + 1)) are as follows: for electron
26:1, for photon 47:1, for graviton 95:1. It is curious
that, according to the same numerical calculations, the
total intensity of the photon radiation by a black hole is
quantitatively close to the naïve Planck one.

We mean here sufficiently light black holes, with
mass ∼ 1015 − 1016 g, and with typical temperature in
the interval 10−1 MeV, correspondingly. Electrons and
positrons emitted by such black holes can be treated with
good accuracy as ultrarelativistic ones. However, for real
black holes the temperature (2) is negligibly small: for
the mass comparable with that of the Sun it is only about
10−7 K.

As to the stars with masses ∼ 1015 − 1016 g, their
gravitational field is too weak, they cannot compress to
their gravitational radii, they cannot turn into black holes.
Such light black holes in principle could arise at the most
early stages of the Universe evolution.

But could these mini-holes survive since those times?
Could their age approach the Universe life time τ ∼ 1010

years, or 1017 s? The problem here is the black hole
thermal radiation itself. Let us estimate its intensity I
by dimensional arguments: divide T by the characteristic

time rg/c:

I ∼ cT/rg ∼ m4
pc4/(h̄M2). (4)

We have introduced here the so-called Planck mass

mp = (h̄c/k)1/2 = 2.2×10−5 g . (5)

Obviously, I =−c2dM/dt. Solving the differential equa-
tion

dM/dt =−m4
p c2/(h̄M2) ,

we find that to survive until our time a black hole should
have an initial mass

M > mp (τ/tp)
1/3 ∼ 1015 g . (6)

Here tp is the so-called Planck time

tp = h̄/(mpc2) =
(

h̄k/c5
)1/2

= 0.54×10−43 s . (7)

Together with the energy, a black hole loses its mass.
Then, according to relation (4), the intensity of its radi-
ation grows, and the gravitational radius of a black hole
gets smaller. However a star cannot radiate more energy
than it has. The radiation stops when the black hole tem-
perature becomes comparable to its rest energy, at

Mc2 ∼ T ∼ m2
pc2/M ,

i.e. when the mass of such a mini-hole decreases to the
Planck mass:

M ∼ mp .

Here our semiclassical consideration of quantum effects
becomes inapplicable, and a consistent quantum theory
of gravity is necessary.

It is instructive to look at relation (2) somewhat oth-
erwise. It demonstrates that the energy of a black hole,
together with its mass, decreases as the temperature in-
creases. Thus, the heat capacity of a black hole is nega-
tive. This unusual property is quite typical for gravitating
systems in general [4]. As to a black hole, its negative
heat capacity is directly related to the instability caused
by radiation. Let us recall, however, that the classical in-
stability of an electron bound in the Coulomb field, also
caused by radiation, is stabilized by quantum effects. In
the case of black holes as well, it is natural to assume that
on the Planck scale their semiclassical radiative instabil-
ity is stabilized by quantum effects.

One more fact related to the radiation of black holes.
For the typical time interval ∆t ∼ rg/c between the acts
of radiation, the uncertainty of the energy of a black hole
is ∆E ∼ h̄/∆t ∼ h̄c3/kM. The corresponding uncertainty
in the gravitational radius is [6]

∆rg ∼ k ∆M/c2 ∼ k ∆E/c4 ∼ h̄/(Mc) .



Obviously, at least due to this uncertainty, the time of
the fall of a point-like particle to the horizon (which
is logarithmically divergent in the classical approach!)
becomes finite:

t ' rg ln rg/∆rg ' rg ln M2/m2
p .

The arising logarithm is huge, lnM2/m2
p ' 102, but here

it is not of much importance.

ENTROPY AND HORIZON AREA

Now, when the temperature of a black hole is known, its
entropy is calculated with the well-known thermodynam-
ical formula dE = T dS. In our case T is given by formula
(2), and E = Mc2. Solving the differential equation

dM = h̄cdS/(8πkM)

with the natural boundary condition S = 0 for M = 0,
we find S = 4πkM2/(h̄c) . It is convenient to introduce
the so-called Planck length

lp = (h̄ k/c3)1/2 = 1.6×10−33 cm . (8)

Then we arrive at the following remarkable relation be-
tween the entropy of a Schwarzschild black hole and the
area of its horizon A = 4πr2

g:

S = πr2
g/l2

p = A/(4l2
p) . (9)

The corresponding analysis for a charged black hole
is more intricate. In the Schwarzschild case, the horizon
area A = 16πk2M2 (from now on, we put c = 1) depends
on the only parameter M, and the adiabatic invariance of
A means that M is also an adiabatic invariant. But the
horizon area of a charged black hole depends not only on
its mass, but on its charge q as well (see, e.g., [7]):

Ach = 4πr2
gc; rgc = kM +

√
k2M2− kq2 . (10)

So, what happens with this black hole when a small
charge e is lowered adiabatically to its horizon? What
remains constant, the horizon area or the mass (if either)?

To answer the question, we resort to a thought experi-
ment. Let a particle with energy ε at infinity and charge
e falls radially to the horizon. The charges e and q are
of the same sign, so that the electrostatic repulsion could
compensate for the gravitational attraction. As a result of
the capture, the black hole mass increases by ∆M = ε ,
and its charge by ∆q = e (both energy and charge are
conserved). The change of the horizon area in this pro-
cess is

∆Ach =
8πrgck√

k2M2− kq2

(
ε − eq

rgc

)
. (11)

If one chooses ε = eq/rgc, then for a non-extremal black
hole (i.e. for q2 < kM2) this expression turns to zero.
Let us prove now that at the capture the particle velocity
tends to zero, i.e. that the capture itself is adiabatic. To
this end, we use the identity gµν uµ uν = 1. In the present
case of diagonal metric and radial motion, this identity
reduces to g00(u0)2 +grr(ur)2 = 1, or

g00(u0)2 +grr(ur)2 = 1 . (12)

In this case

g00 =−grr = a−2(r) =
(
1− 2kM/r + kq2/r2)−1

.

By definition, u0 = (p0−eA0)/m = (ε−eq/r)/m. We re-
call here that the zeroth component of the covariant mo-
mentum is the conserved particle energy (it gets obvious
in the Hamilton-Jacobi formalism). Again by definition,
(ur)2 = (dr/dτ)2, where τ is the invariant, local time.
Finally, equation (12) is rewritten as follows:

(ε− eq/r)2 = m2 (dr/dτ)2 +m2a2 . (13)

At the horizon, at r = rgc, a vanishes. It gets clear now
that at the capture by a charged black hole of a particle
with energy ε = eq/rgc, its radial velocity measured by a
local observer, dr/dτ , tends to zero, and the duration of
this process measured by the same clock tends to infinity.
Thus, the area A of the horizon of a charged black hole
(but not the mass) is the adiabatic invariant2. We recall
now that the entropy remains constant under adiabatic
processes. Therefore, just A/(4l2

p) should be identified
with the entropy of a charged black hole.

QUANTIZATION OF BLACK HOLES.
HOLOGRAPHIC BOUND

On the other hand, the quantization of an adiabatic invari-
ant is perfectly natural. And just on this argument was
based the idea of quantizing the horizon area of black
holes proposed by J. Bekenstein [10].

We start the discussion with eq. (13), rewriting it as

ε− eq/r =
√

m2 (dr/dτ)2 +m2a2 . (14)

It is convenient to go over here from the contravariant
radial component pr = m dr/dτ of the momentum vector
to the corresponding component πr in the locally inertial

2 Originally, the fact of the adiabatic invariance of the horizon area was
established by D. Christodoulu and R. Ruffini for rotating black holes
[8, 9]. But here we confine to a more simple case of charged black
holes.



frame: πr =
√−grr pr = pr/a(r). And in the thus arising

expression

ε− eq/r = a(r)
√

(πr)2 +m2

we go over from r to the coordinate ρ , given also in the
locally inertial frame and counted off the horizon:

ρ =
∫ r

rgc

dr
√
−grr(r) =

∫ r

rgc

dr√
a(r)

=
2rgc

√
r− rgc√

rgc− r−gc

;

here r−gc = kM−
√

k2M2− kq2; we assume that ρ ¿ rgc.
As a result, eq. (14) transforms for r → rgc to

ε− eq
r

=

√
k2M2− kq2

rgc
ρ

√
(πr)2 +m2 . (15)

At last, in virtue of (11), the change of the horizon
surface in this process is

∆Ach =
8πkrgc√

k2M2− kq2

(
ε − eq

rgc

)

= 8πk
√

ρ2 (πr)2 +(mρ)2 . (16)

Of course, mρ vanishes in the limit ρ → 0. However, in
virtue of the uncertainty relation, ρ πr stays finite in this
limit: ρ πr>∼ h̄. Thus, the minimum change of the horizon
surface is

∆Amin ' 8π h̄k = 8π l2
p . (17)

Obviously, the fact that the minimum possible change
of the horizon area is finite, makes the horizon quanti-
zation quite natural. We assume therefore that the whole
horizon area A consists of patches of typical size∼ 8π l2

p .
Each of them is characterized by a quantum number j,
such that the contribution a of a patch to the area depends
on this quantum number, a = a( j). Besides, a patch can
possess a quantum number m, such that a is independent
of it3. Then, the horizon area is conveniently rewritten as

A = 8πγ l2
p ∑

jm
a( j)ν jm , (18)

where ν jm is the number of patches of given j and m. The
numerical factor γ will be determined below for given
function a( j) and given statistical weight g( j) (as usual,
the latter equals the number of possible values of m for
given j). Correspondingly, the entropy of a black hole is

S = 2πγ ∑
jm

a( j)ν jm . (19)

3 In principle, both j and m may refer not only to a single quantum
number each, but to sets of them: j = ( j1, j2, ...) , m = (m1, m2 ...).

The occupation numbers ν jm can be related to a( j)
and g( j) by using the so-called holographic bound. Ac-
cording to it, the entropy S of any spherical nonrotating
system confined inside a sphere of area A is bounded by
relation

S≤ A/(4l2
p) , (20)

with the equality attained only if the system is a black
hole [11–13].

A simple intuitive argument confirming this bound is
as follows [13]. Let us allow the discussed system to col-
lapse into a black hole. Due to the spherical symmetry,
this process is not accompanied by radiation or any other
loss of matter. During the collapse the entropy increases
from S to Sbh, or at least remains constant. And the result-
ing horizon area Abh is certainly smaller than the initial
confining one A. Now, with the account for relation (9)
for a black hole, we arrive, through the obvious chain of
(in)equalities

S≤ Sbh = Abh/(4l2
p)≤ A/(4l2

p) ,

at the discussed bound (20).
The holographic bound looks quite surprising since

usually the entropy of a body is proportional to its vol-
ume, but not to the area of its surface. However, in reg-
ular situations limit (20) is so weak quantitatively that
no contradiction with the common sense arises. In fact,
at least for spherically symmetric black holes, the holo-
graphic bound has been checked by careful analysis of
various physical situations, and therefore its validity is
firmly established.

The result (20) can be formulated otherwise. Among
the spherical surfaces of a given area, it is the surface of
a black hole horizon that has the largest entropy.

Let us come back now to our problem. We will con-
sider the “microcanonical” entropy S of a quantized sur-
face, defined as the logarithm of the number of states of
this surface for a fixed value A of its area (instead of fixed
energy in common problems).

Obviously, this number of states K depends essentially
on the assumption concerning the distinguishability of
the patches. So, let us discuss first of all which of a
priori possible assumptions is reasonable here from the
physical point of view [14].

We start with the possibility of complete indistin-
guishability of patches. It means that for given ν jm no
permutation of any patches results in new states, i.e. this
is the only state at all. Correspondingly, the entropy in
this case just turns to zero.

Let us consider now the opposite assumption, that of
completely distinguishable patches. In this case the total
number of states is

K = ν! , ν = ∑
j

ν j = ∑
jm

ν jm ,



with the microcanonical entropy4

S = ν lnν .

Obviously, here the maximum entropy for fixed A ∼
∑ j a( j) ν j is attained with all a( j) being as small as
possible. Then, in the classical limit ν À 1, the entropy
of a black hole grows faster than its area: A ∼ ν , but
S = ν lnν ∼A lnA. Thus, the assumption of complete dis-
tinguishability is in conflict with the holographic bound,
and therefore should be discarded.

Now the third possibility (used to be quite popular).
Here the total number of states and the entropy are

K = ∏
j

g( j)ν j , and S = ∑
j

ν j lng( j). (21)

This scheme corresponds in fact to the following as-
sumptions on the distinguishability of patches:

nonequal j, any m −→ indistinguishable;
equal j, nonequal m −→ distinguishable;
equal j, equal m −→ indistinguishable.

The combination of the first two of them looks strange
and unnatural (except the special case when only a single
value of j is allowed for all patches).

The only reasonable set of assumptions on the distin-
guishability of patches, which may result in acceptable
physical predictions (i.e. may comply both with the
relation (9) between the entropy and the horizon surface,
and with the holographic bound (20)) is as follows:

nonequal j, any m −→ distinguishable;
equal j, nonequal m −→ distinguishable;
equal j, equal m −→ indistinguishable.

Under these assumptions, the number of states of the
horizon surface, for a given number ν jm of patches with
quantum numbers j and m, is obviously [21]

K = ν ! ∏
jm

1
ν jm !

, where ν = ∑
j

ν j , ν j = ∑
m

ν jm , (22)

and the corresponding entropy equals

S = lnK = ln(ν !) −∑
jm

ln(ν jm !) . (23)

The structures of the last expression and of formula (19)
are so different that in a general case the entropy certainly
cannot be proportional to the area. However, this is the
case for the maximum entropy. We will calculate it for a

4 We assume that all occupation numbers are sufficiently large, so that
the simple Stirling approximation is applicable for all factorials.

fixed area, i.e. for a fixed sum

N =
∞

∑
jm

a( j)ν jm = const . (24)

The problem reduces to the solution of the system of
equations

lnν− lnν jm = µ a( j) , (25)

where µ is the Lagrange multiplier for the constraining
relation (24). These equations can be rewritten as

ν jm = ν e−µ a( j), or ν j = ν g( j)e−µ a( j) . (26)

Now we sum expression (26) over j, and with ∑ j ν j = ν
arrive at the equation for µ:

∑
j

g( j)e−µ a( j) = 1. (27)

On the other hand, multiplying equation (25) by ν jm
and summing over jm, we arrive, with the constraint
(24), at the following result for the maximum entropy
for given N:

Smax = µ N = µ A/(8πγ l2
p) . (28)

Thus, equation (18) for the quantized area can be
written as

A = 8πγ l2
p ν ∑

j
g( j)a( j)e−µa( j) , (29)

where γ = µ/(2π), and the value of µ is found from
equation (27).

Let us note that, strictly speaking, the summation in
formulae (27), (29) goes not to infinity, but to some j,
corresponding to the maximum contribution amax to the
horizon area. The value of amax follows from the obvious
condition: none of the occupation numbers ν jm should be
less than unity. Then equation (26) results in the estimate

amax ∼ lnν/µ . (30)

We illustrate now these general relations with an ex-
ample of a concrete model, that of loop quantum gravity
(LQG) [16]. A quantized surface in LQG looks as fol-
lows. One ascribes to it a set of punctures (corresponding
to our patches). Each puncture is supplied with an integer
or half-integer quantum number j:

j = 1/2,1,3/2, ... . (31)

The projections m of these “angular momenta” (unre-
lated to the common ones) run as usual from − j to j.
The area of a surface is

A = 8πγ l2
p ∑

jm

√
j( j +1)ν jm. (32)



This is in fact a special case of the above general expres-
sions with

a( j) =
√

j( j +1) , g( j) = 2 j +1. (33)

The numerical factor γ in (32) (the so-called Barbero–
Immirzi parameter) corresponds in LQG to a family
of nonequivalent quantum theories, all of them being a
priori, without additional arguments, viable [17, 18]. In
this case, our “secular” equation (27) and its solution are,
respectively, [15, 19]:

∞

∑
j=1/2

(2 j +1)e−µ
√

j( j+1) = 1, γ =
µ
2π

= 0.274. (34)

QUANTIZATION OF ROTATING BLACK
HOLES

In the next section we will discuss the radiation spectrum
of quantized black holes. Here, generally speaking, one
should take into account the selection rules for angular
momentum. Therefore, the quantization rule for the mass
of a Schwarzschild black hole should be generalized to
that of a rotating Kerr black hole.

To derive the quantization rule for Kerr black hole, we
come back to the thought experiment analyzed in [8, 9].
Therein, under the adiabatic capture of a particle with
an angular momentum j, the angular momentum J of a
rotating black hole changes by a finite amount j, but the
horizon area A does not change. Of course, under some
other variation of parameters it is the angular momentum
J that remains constant. In other words, we have here
two independent adiabatic invariants, A and J, for a Kerr
black hole with a mass M.

Such a situation is quite common in ordinary mechan-
ics. For instance, the energy of a particle with mass m,
bound in the Coulomb field U(r) = − α/r, is

E =− mα2

2(Ir + Iφ )2 , (35)

where Ir and Iφ are adiabatic invariants for the radial and
angular degree of freedom, respectively. Of course, the
energy E is in a sense an adiabatic invariant also, but
it is invariant only with respect to those variations of
parameters under which both Ir and Iφ remain constant
(or at least their sum). As to quantum mechanics, in it
formula (35) goes over into

E =− mα2

2 h̄2 (nr +1+ l)2
, (36)

where nr and l are the radial and orbital quantum num-
bers, respectively.

This example prompts the solution of the quantization
problem for a Kerr black hole. It is conveniently formu-
lated in terms of the so-called irreducible mass Mir of a
black hole, related by definition to its horizon radius rh
and area A as follows:

rh = 2kMir , A = 16πk2M2
ir . (37)

Together with the horizon area A, the irreducible mass is
an adiabatic invariant. In accordance with (18) and (24),
it is quantized as follows:

M2
ir =

1
2

m2
pγ N , (38)

where m2
p = h̄c/k is the Planck mass squared.

Of course, for a Schwarzschild black hole Mir coin-
cides with its ordinary mass M. However, for a Kerr black
hole the situation is more interesting. Here [9]

M2 = M2
ir +

J2

r2
h

= M2
ir +

J2

4k2M2
ir

, (39)

where J is the internal angular momentum of a rotating
black hole. Let us note that equation (39) describes a
relativistic rotator with the rest mass Mir and the moment
of inertia Mirr2

h (defined as usual in the nonrelativistic
limit) [7].

Now, with equation (38), we arrive at the following
quantization rule for the mass squared M2 of a rotating
black hole:

M2 =
1
2

m2
p

[
γN +

J(J +1)
γN

]
. (40)

Obviously, as long as a black hole is far away from an
extremal one, i.e. while γN À J, one can neglect the
dependence of M2 on J.

RADIATION SPECTRUM OF
QUANTIZED BLACK HOLE

It follows from expression (40) that for a rotating black
hole the radiation frequency ω , which coincides with the
loss ∆M of the black hole mass, is

ω = ∆M = T µ ∆N +
1

2kM
J +1/2

γN
∆J = T ∆S + Ω ∆J ,

(41)
where ∆N and ∆J are the losses of the area quantum
number N and of the angular momentum J, respectively;
∆S = µ ∆N, and the effective angular velocity is Ω =
(J + 1/2)/(Mr2

h). Obviously, equation (41) is in fact a
common thermodynamic relation.

We will be interested mainly in the first, temperature
term in (41), dominating for black holes far from the



extremal regime, i.e. for J ¿ γN. Just this effect is dis-
cussed in detail below.

As to the non-temperature radiation of a black hole
close to an extremal one, as described by the term with
∆J in (41), this effect is due to the tunnelling (see rela-
tively recent discussion of this problem in [20, 21]). Loss
of the charge by a charged extremal black hole occurs
due to the Coulomb repulsion between the black hole and
emitted particles of the same sign of the charge. For an
extremal rotating black hole, the radiation is caused by
the interaction of angular momenta: particles (massless
mainly), with the total angular momenta parallel to that
of the black hole, are repelled from it.

But let as come back to the temperature radiation. The
natural assumption is that it occurs when a patch with a
given value of j disappears, which means that

∆N j = a( j) , ω j = T µ a( j) . (42)

Thus we arrive at the discrete spectrum with a finite num-
ber of lines. Their frequencies start at ωmin = T µ amin,
where amin is the minimum value of a( j), and termi-
nate at ωmax ∼ T lnν (we recall here that amax ∼ lnν/µ).
Thus, the number of lines is not so large, ∼ 102, if the
mass of black hole is comparable to that of the Sun. How-
ever, due to the exponential decrease of the radiation in-
tensity with ω (see below), the existence of ωmax and
finite number of lines are not of much importance.

To substantiate the made assumption, we come back to
the lower bound (17) on the change of the horizon area
under an adiabatic capture of a particle. The presence
of the gap (17) in this process means that this threshold
capture effectively consists in the increase by unity of
a single occupation number ν jm. If the capture were
accompanied by a change of few occupation numbers,
some of them increasing and some of them decreasing,
the change of the area could be made in general as small
as one wishes 5.

It is only natural to assume that in the radiation process
as well, the change of few occupation numbers, instead
of one, is at least strongly suppressed. In this way we
arrive at equations (42).

Our next assumption, at least as natural as this one,
is that the probability of radiation of a quantum with
frequency ω j is proportional to the occupation number
ν j. Correspondingly, the radiation intensity I j at this
frequency ω j is proportional to ν j ω j:

I j ∼ ν j ω j ∼ ν g( j)ω j e−ω j/T . (43)

Thus, we have arrived in a natural way at the exponential
Wien profile for ω j À T . The conclusion that the discrete

5 Except the case when a( j) is a linear function of j, and, correspond-
ingly, the area spectrum is equidistant. Generally speaking, this case
cannot be excluded.

thermal radiation spectrum of a black hole should fit the
Wien profile was made in [22] for the case of equidistant
horizon quantization

Numerical estimates demonstrate that the total radi-
ation intensity of photons by quantized black holes is
about the same as that of classical ones (of course, if
µamin<∼1). It follows also from the same estimates that
the total natural widths of the radiation lines of quantized
black holes do not exceed few percent of the line separa-
tions. Thus, the radiation spectrum is really discrete.
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