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Abstract. The triplet superconductivity in UGe2 and URhGe coexists with itinerant ferromagnetism such that in the pressure-
temperature phase diagram the whole region occupied by the superconducting state is situated inside a more vast ferromagnetic
region. In the same family metal UCoGe the pressure dependent critical lines TCurie(P) and Tsc(P) of the ferromagnet and the
superconducting phase transitions intersect each other. The two-band multidomain superconducting ferromagnet state arises at
temperatures below both of these lines. The symmetry and the order parameters of the ferromagnet as well of the paramagnet
superconducting states are established. The Josephson coupling between two adjacent ferromagnet superconducting domains
is discussed.

Keywords: ferromagnetic superconductor
PACS: 74.20.De,74.20.Rp

INTRODUCTION

A phase transition of the second order breaks some sym-
metry such that below the critical temperature the or-
dered phase of lower symmetry in comparison with the
initial state is formed. The intersection of critical lines
on the phase diagram leads to formation of an ordered
phase with symmetry lower than the symmetries of both
initial ordered states existing below of each critical lines
separately. Here we study an intersection of critical lines
of ferromagnet and superconducting phase transitions as
an special example of general situation mentioned first
by Landau. [1]

The co-existence of superconductivity and ferromag-
netism in several uranium compounds UGe2, [2] URhGe,
[3] and the recently revealed UCoGe. [4] is found to arise
as a co-operative phenomena rather than as the overlap of
two-mutually competing orders. In all these compounds
the substantial reduction of the ordered moment as com-
pared with the Curie-Weiss moment provides clear ev-
idence of 5 f itineracy. In the first two compounds the
Curie temperatures TCurie is more than the order of mag-
nitude higher than their critical temperatures for super-
conductivity. In UCoGe the ratio TCurie/Tsc at ambient
pressure is about four. The large exchange field and also
high upper critical field at low temperatures strongly ex-
ceeding the paramagnetic limiting field [5, 6, 7] indicate
that here we deal with Cooper pairing in the triplet state.

The singlet superconductivity coexists with ferromag-
netism in a form known as the Anderson-Suhl or crypto-
ferromagnetic superconducting state (for review see [8])
characterized by the formation of a transverse domain-
like magnetic structure. The structure period or domain

size is larger than interatomic distance and smaller than
the superconducting coherence length that weakens the
depairing effect of the exchange field. The latter is irrele-
vant in the case of triplet superconductivity. Hence, there
is no reason for the formation of a cryptomagnetic state.
Indeed, no traces of space modulation of magnetic mo-
ments directions on the scale smaller than the coherence
length has been revealed.[3, 9, 10, 11] On the other hand
the neutron depolarization measurements on UGe2 down
to 4.2 K (that is in the ferromagnet but not superconduct-
ing region) establish, that the magnetic moment strictly
aligned along a-axis, with a typical domain size in the bc-
plane of the order 4.4× 10−4 cm [12] that is about two
orders of magnitude larger than the largest superconduct-
ing coherence length in b-direction ξb ≈ 7×10−6 cm.

Arising at temperatures far below the corresponding
Curie temperature the superconductivity in UGe2 and
URhGe coexists with ferromagnetism in some pressure
interval such that in the (P,T ) phase diagram the whole
region occupied by the superconducting state is situ-
ated inside a more vast ferromagnetic region.[13, 14] In
URhGe the Curie temperature increases up to the high-
est pressure achieved (130 kbar). The superconducting
critical temperature decreases slowly up to 20 kbar. It is
more peculiar the behavior of UGe2, where at low tem-
peratures the ferromagnetism and the superconductivity
abruptly ( by means the first-order-type transition) disap-
pears at the same critical pressure Pc ≈ 15 kbar.

The observation that the superconductivity in UGe2
is confined to the ferromagnet state can be trivially ex-
plained by an assumption that the ferromagnetism in this
compound is formed by f-electrons with half-metallic
bands filling. Namely, the band with the spin-down elec-
trons is completely filled, whereas the band with spin-up



T

PP*

N

SFS

F

FIGURE 1. The schematic pressure-temperature phase diagram of superconducting UCoGe. Here, N is the normal paramagnet
phase, F is the ferromagnet phase, S is the paramagnet superconducting phase, FS is the multi-domain ferrpomagnet superconduct-
ing phase. All the lines are the lines of the second-order phase transitions.

electrons filled up to the Fermi level. The triplet spin-
up superconducting state formed in this band persists
so long the Fermi level intersects this band. The pres-
sure induced the Fermi level lifting above the band upper
boundary kills both the itinerant ferromagnetism and the
superconductivity.

The particular one-band superconducting state was
chosen [6] for successful explanation of temperature de-
pendences of the upper critical field in URhGe in dif-
ferent crystallographic directions. This state is also ap-
propriate for the description [15] of the transition driven
by the change of orientation of the ordered magnetic
moment in this compound by the application of mag-
netic field in perpendicular direction accompanying by
the arising a reentrant superconducting state [16]. The
one band superconductivity, of course, does not exclude
the existence of the other conducting but not supercon-
ducting bands, or, more exactly, the bands with negligi-
bly small superconducting gaps. The latter is in corre-
spondence with reduced specific heat jump in compari-
son with BCS value, and the finite residual zero temper-
ature ratio (C(T )/T )T→0 comparable with its magnitude

in the normal state found in all uranium superconducting
ferromagnets.

The phase diagram of the new ferromagnetic super-
conductor UCoGe is qualitatively different (see Fig-
ure 1).[17] At ambient pressure, the ferromagnetism
(TCurie ≈ 3K) coexists with superconducting state (Tsc ≈
0.7K). Then at applied pressure, the Curie temperature
decreases such that no indication of ferromagnetic order
is observed above P∗ ≈ 10 kbar. The resistive supercon-
ducting transition is, however, quite stable with changes
in temperature and persists up to the highest measured
pressure of about 24 kbar. Thus, the pressure dependent
transition lines TCurie(P) and Tsc(P) apparently intersect
each other and the superconductivity exists both in the
paramagnet and in the ferromagnet state.

The ferromagnet superconducting state in an or-
thorhombic metal is similar to the superfluid 3He−A in
an external magnetic field known as A2 state. The su-
perfluid 3He−A is the spin nonpolarized state formed
by the spin-up and the spin-down Cooper pairs in equal
amounts. There is also the spin-polarized A1 state where
the pairing only spin-up particles occurs.[18] The 3He−



A1 arises from the normal Fermi liquid in an external
magnetic field. Then, at lower temperature, the liquid
passes to the A2 state where the paired spin-up and spin-
down states are almost equally populated. The presence
of spin-orbital coupling admixes some amount of the
spin-down Cooper pairs to pure A1 state [19], such that
the A1 and A2 states are in fact qualitatively indistin-
guishable. The phase transition between these two states
is a crossover, looking as a phase transition due to the
smallness of the spin-orbital coupling in superfluid 3He.
The nonunitary two-band superconductivity in the ferro-
magnet state of UCoGe is an analog of A2 state.

The increasing pressure causes the decrease of the ex-
change field that suppresses the spin-up and spin-down
band difference. At small band difference the nonuni-
tary A2-like state only slightly differs from the unitary
A-like state. The time reversal symmetry is still broken
since even the pure A-like phase is the orbital ferromag-
net. The restoration of the time reversal symmetry occurs
at recreation of spin-up and spin-down band degeneracy
by the phase transition from the ferromagnet supercon-
ducting state (A2-like phase) to the paramagnet supercon-
ducting state similar to the planar state of the superfluid
3He (for the superfluid 3He phase definitions see for in-
stance [20]). Thus, the A2-like superconducting state is
separated from the normal state by the more symmet-
ric, paramagnet planar-like state. We see, that the (P,T )
phase diagram in UCoGe is quite naturally explained in
terms of two band superconducting state in this material.
The observation of the upward curvature in the tempera-
ture dependence of the upper critical field in UCoGe [7]
adds the additional argument in support of this point.

The symmetries and the order parameters of uncon-
ventional superconducting states arising from the normal
state with a ferromagnetic order in orthorhombic crys-
tals with strong spin-orbital coupling have been found
in the paper. [21] Then it was pointed out that super-
conducting states in triplet ferromagnet superconduc-
tors represent a special type of two band superconduct-
ing states. [22, 23]. There were obtained several results
based on phenomenlogical (Ginzburg-Landau) and mi-
croscopic descriptions of two-band superconductivity. It
was proved, however, that the superconducting ferro-
magnet classes pointed there have been found improp-
erly. Although, it leaves untouched the main results of
[21, 22, 23], the based on these papers description of
possible (P,T ) phase diagrams for two band supercon-
ducting states in an orthorhombic itinerant ferromagnet
is incorrect.[24] To make it correctly we return to the
definition of the superconducting ferromagnet classes.
It will be proven that TCurie(P) and Tsc(P) can intersect
each other as the critical lines of the phase transition of
the second order. The symmetry and the order parameters
of the multidomain ferromagnet as well of the paramag-
net superconducting states are established. The Joseph-

son coupling between neighboring superconducting do-
mains is also discussed.

TWO-BAND SUPERCONDUCTING
FERROMAGNET PHASE DIAGRAM

All uranium ferromagnetic superconductors are or-
thorhombic metals. The symmetry of its normal para-
magnetic state is determined by the elements of the
group

GN = D2×U(1)×R, (1)

where D2 = (E,Cz
2,C

x
2,C

y
2) is the point symmetry group

including the operations Cx
2,C

y
2,C

z
2 of rotation on the

angle π about the x,y,z- axes correspondingly, U(1) is
the group of gauge transformations, and R is the time
reversal operation.

If the pressure dependent transition lines TCurie(P) and
Tsc(P) intersect each other at P = P∗ then the region of
the coexistence of superconductivity and ferromagnetism
is separated from the normal state by the region of ferro-
magnet normal state at P < P∗ and by the region of the
superconducting state at P > P∗ (see Figure 1).

In the transition from the normal paramagnet state to
the normal ferromagnet state the magnetic moment di-
rected along one crystallographic axis appears. We chose
this direction as the ẑ axis. Hence, in the ferromagnet
state the symmetry reduces to the

GF = D2(Cz
2)×U(1), (2)

where
D2(Cz

2) = (E,Cz
2,RCx

2,RCy
2) (3)

is the so called magnetic class [25] or the point symme-
try group of the ferromagnet. The rotations on the angle
π about the x- and y- directions are accompanied by the
time inversion R that changes the direction of magnetiza-
tion to the opposite one.

In the transition from the normal paramagnet state to
the superconducting paramagnet state the gauge symme-
try is broken, such that the symmetry of this, so called
conventional superconducting state is

GS = (E,Cz
2,C

x
2,C

y
2)×R. (4)

There is another possibility related to the formation of
nonconventional superconducting state where, in the ad-
dition to the gauge symmetry, the point symmetry is also
broken. We shall not discuss it here.

Now, we shall consequently describe the phase transi-
tions from the normal ferromagnet state (F) to the super-
conducting ferromagnet state (FS) taking place at P < P∗

and from the paramagnet superconducting state (S) to the
superconducting ferromagnet state (FS) at P > P∗.



F to FS phase transition

As it was remarked in [22] superconducting state in
an itinerant ferromagnet represents the special type of
two band superconductiving state consisting of pairing
states formed by spin-up electrons from one band and
by spin-down electrons from another band. Hence, a
superconducting state characterizes by two component
order parameter

d1(k) = ∆↑(k)(x̂+ iŷ), d2(k) = ∆↑(k)(x̂− iŷ). (5)

Here, x̂ and ŷ are the unit vectors of the spin coordinate
system pinned to the crystal axes.

The unconventional superconducting states arising
from the normal state with a ferromagnetic order in or-
thorhombic crystals with strong spin-orbital coupling be-
long to the two different corepresentations A and B.[21]
All the states relating to the given corepresentation obey
the same critical temperature. The order parameter am-
plitudes for A and B states correspondingly are given by

∆
A
↑ (k) = η1(kxu1 + ikyu2),

∆
A
↓ (k) = η2(kxu2 + ikyu4), (6)

∆
B
↑ (k) = η1(kzv1 + ikxkykzv2),

∆
B
↓ (k) = η2(kzv2 + ikxkykzv4). (7)

They are odd functions of the momentum directions of
pairing particles on the Fermi surface. The functions
ui = ui(k2

x ,k
2
y ,k

2
z ) and vi = vi(k2

x ,k
2
y ,k

2
z ) are invariant in

respect of all transformations of orthorhombic group.
For the brevity, in that follows, we shall discuss only
the A state. This nonunitary state obviously reminds the
superfluid 3He−A2 state.

The complex order parameter amplitudes η1 =
|η1|eiϕ1 and η2 = |η2|eiϕ2 are not completely indepen-
dent. The relative phase difference ϕ1 − ϕ2 is chosen
such that the quadratic in the order parameter part of
the Ginzburg-Landau free energy density should be
minimal. In an ordinary two-band superconductor it is

F = α1|η1|2 +α2|η2|2 + γ(η∗
1 η2 +η1η

∗
2 ), (8)

and ϕ1 − ϕ2 = π for γ > 0 and ϕ1 − ϕ2 = 0 for γ <
0. In the case of ferromagnetic normal state the time
reversal symmetry is broken and the quadratic in the
order parameter components free energy density has the
form

F = α1|η1|2 +α2|η2|2 + γ(η∗
1 η2 +η1η

∗
2 )

+iδ (η∗
1 η2−η1η

∗
2 ). (9)

Here, all the coefficients are the functions of the ex-
change field h. The last term breaks the time reversal

symmetry. In the absence of exchange field δ = 0. Min-
imization of free energy (9) fixes the order parameter
components phase difference tan(ϕ1 − ϕ2) = δ/γ . Af-
ter substitution of this value back to (9) we come to the
expression

F = α1|η1|2 +α2|η2|2−
√

γ2 +δ 2(η∗
1 η2 +η1η

∗
2 ).

(10)
Here αi = αi0(T −Tci), i = 1,2 are the band indices, Tci
are the critical temperatures in each band in the absence
of band mixing. Unlike eqn. (9) the complex amplitudes
η1 = |η1|eiθ , η2 = |η2|eiθ in the eqn. (10) have common
phase factors with θ = (ϕ1 +ϕ2)/2. This form of free en-
ergy valid near the phase transition from the ferromagnet
state to the ferromagnet superconducting state has been
used in the papers. [22, 23] The common for the each
band superconductivity critical temperature is given by

Tsc =
Tc1 +Tc2

2
+

√(
Tc1−Tc2

2

)2

+
γ2 +δ 2

α10α20
(11)

In the superconducting A-state the gauge symmetry
is broken. Acting on the order parameters (4), (5) by
the elements g of D2(Cz

2) = (E,Cz
2,RCx

2,RCy
2) group we

obtain the following coefficients of transformation, or
matrices of corepresentation

Γ1 = (1,1,e−2iϕ1 ,e−2iϕ1), Γ2 = (1,1,e−2iϕ2 ,e−2iϕ2),
(12)

correspondingly. Corepresentations Γ1 and Γ2 are equiv-
alent or they are transformed each other by an uni-
tary matrix U as Γ1(g) = U−1Γ2(g)U if the element
g does not include the time inversion, and as Γ1(g) =
U−1Γ2(g)U∗ if the element g includes the time inversion.
It is easy to check that here the matrix of transformation
is U = ei(ϕ2−ϕ1).

The order parameter component d1(k) relating to the
spin-up band is invariant in respect to the following
group of transformations

GFS = (E,Cz
2,RCx

2,RCy
2) = D2(Cz

2). (13)

Action of the time reversal operation R on superconduct-
ing order parameter implies also the multiplication of it
by the square of its phase factor: R→ e2iϕ1R. The second
component d2(k) possess the same symmetry. So, the
group of symmetry of superconducting ferromagnet state
A called also by the superconductiing magnetic class is
D2(Cz

2). This group is the subgroup of the group of sym-
metry of the ferromagnet state (2).

Superconducting ferromagnet domains

The Cooper pairing changes the magnitude of sponta-
neous magnetization in respect to its value in normal fer-



romagnet state. Namely, the superconducting spin mag-
netic moment density is

Ms = µB
[
N′

0↑〈|∆↑(k)|2〉−N′
0↓〈|∆↓(k)|2〉

]
. (14)

Here, in the first term, N′
0↑ is the derivative of the density

of states at the Fermi surface of the spin-up band , and the
angular brackets means the averaging over it. The second
term presents the corresponding input of the spin-down
band. One can write also the orbital magnetic moment
density. [20]

Along with the introduced state A, there is its time
reversed state A∗ characterized by the complex conjugate
order parameter components

d∗1(k) = ζ1(x̂− iŷ)(kxu1− ikyu2),
d∗2(k) = ζ2(x̂+ iŷ)(kxu3− ikyu4). (15)

The states A and A∗ occupy neighboring domains with
the opposite direction of magnetization. The state A∗

order parameter amplitudes are ζ1 = |ζ1|eiφ1 and ζ2 =
|ζ2|eiφ2 . The phase difference is fixed by tan(φ1 −φ2) =
δ (−h)/γ .

The matrices of corepresentations for the state A∗ are
obtained from (12) by the substitution ϕ1,2 → φ1,2. So,
they transformed each other by means the matrices Ui =
ei(ϕi−φi). It means, that the corepresentations for the state
A∗ are equivalent to the corepresentations for the state
A. Hence, the superconducting states in the neighboring
domains obey the same critical temperature.

The symmetry of the time reversed states A∗ belong to
the same superconducting ferromagnet class D2(Cz

2) as
the A-states.

S to FS phase transition

In P > P∗ region at temperature decrease UCoGe pass
to the nonmagnetic superconducting state. Let us assume
the simplest and quite natural situation that it is the
superconducting state with the order parameter

d(k) = 2η(kxw1x̂+ kyw2ŷ), (16)

transforming according to the unit representation of the
normal state point symmetry group D2. Here η = |η |eiϕ

and the functions w1,2 = w1,2(k2
x ,k

2
y ,k

2
z ) are invariant in

respect of all transformations of orthorhombic group.
This state reminds planar phase of superfluid 3He. The
paramagnet superconducting state is invariant in respect
to the group (4) which can be rewritten as

GS = D2(Cz
2)+R×D2(Cz

2). (17)

By further decrease the temperature we approach to
TCurie(P). At this temperature the exchange field appears,

and the Kramers degeneracy between spin-up and spin-
down electron states is lifted accompanied by arising of
deviation from of the order parameter (16)

d(k) = 2η(kxw1x̂+ kyw2ŷ)
= η(kxw1− ikyw2)(x̂+ iŷ)+η(kxw1 + ikyw2)(x̂− iŷ)

→ d̃(k) = η1(kxw1− ikyw2)(x̂+ iŷ)
+η2(kxw1 + ikyw2)(x̂− iŷ) (18)

The order parameter d̃(k) transforms according to two-
dimensional corepresentation of the symmetry group
(17) of the paramagnet superconducting state.

Along with increase of the band splitting the two
component of the order parameter d̃(k) are transformed
to the order parameters of spin-up and spin-down bands
given by eqns. (5), (6). The ferromagnet superconducting
state determined by eqn. (18) as well by the eqns. (5) and
(6) is invariant in respect to the group

GFS = D2(Cz
2). (19)

The latter is the subgroup of the group of symmetry of
ferromagnet state GF (2) as well as of the symmetry
group of paramagnet superconducting state GS (17). So,
the lines of the ferromagnet and the superconducting
phase transitions can intersect each other as the critical
lines of the phase transitions of the second order.

INTERDOMAIN JOSEPHSON
COUPLING

Let us consider a flat domain wall dividing magnetic
moment-up and -down domains in single band ferromag-
net. This case, the localized at x = 0 domain wall con-
tribution to the superconducting free energy density is
given by [26]

FDW =
[
γ1|(η |2 + |ζ |2)+ γ2(η∗

ζ +ηζ
∗)

+ iγ3(η∗
ζ −ηζ

∗)]δ (x). (20)

Here η = |η |eiϕ and ζ = |ζ |eiφ are the superconducting
order parameters in the left (magnetic moment-up) do-
main and in the right (magnetic moment-down) domain,
correspondingly. The boundary conditions at x = 0 are
derived by the minimization of the sum of domain wall
(20) and the gradient free energies.[20]

K
∂ζ

∂x
= γ1ζ +(γ2 + iγ3)η

−K
∂η

∂x
= γ1η +(γ2− iγ3)ζ . (21)

Here, the rigidity coefficients K ∼ h̄2/m. The solutions of
left and right domain nonlinear Ginzburg-Landau equa-
tions supplemented by these boundary conditions deter-
mine the order parameter distribution of two domain su-
perconducting structure. The solution of corresponding



linear problem is physically relevant only in the case
of stimulation of superconductivity by the domain wall
when the localized near domain wall superconducting
state arises at temperatures higher than the temperature
of superconducting phase transition in single domain ge-
ometry.

The situation for two band superconductivity is much
more complicated. This case the two-band domain wall
free energy density is obtained by the addition to the
eqn.(20) the corresponding terms for the second band
order parameters η2 and ζ2 and also the interband terms
symmetric in respect to the substitutions ηi by ζi and vice
versa.

Substituting the boundary conditions (21) in the sum
of the left domain and the right domain current through
the domain wall (see for instance [20]) we obtain the
density of the interdomain Josephson current:

j =
8eK

h̄
|ζ ||η | [γ2 sin(φ −ϕ)− γ3 cos(φ −ϕ)] (22)

Thus, due to the time reversal breaking (γ3 6= 0) the ex-
pression for the Josephson current between the adjacent
superconducting domains with spin-up and spin-down
magnetization differs from the usual weak link Joseph-
son current formula. In the equilibrium, the phase differ-
ence between domains is fixed: tan(φ −ϕ) = γ3/γ2, and
a spontaneous interdomain current is absent.

In conclusion of this section it is worth to be noted
that the existence of the interdomain Josephson coupling
bilinear in respect of |η | and |ζ | is typical for the A super-
conducting states. The order paramer for the B states is
vanishing in the equatorial plane kz = 0. This case, there
is only the higher order Josephson coupling between the
domains divided by a flat domain wall parallel to the
magnetization direction.

CONCLUSION

The superconducting state in the itinerant ferromagnet
uranium compound UCoGe manifests the properties nat-
urally explained in terms of two band superconductiv-
ity with triplet pairing. We discussed the symmetry and
the order parameters of such a state. It was proven that
the pressure dependent critical lines of the ferromag-
net TCurie(P) and the superconducting phase transition
Tsc(P) can intersect each other in the correspondence
with the experimental observations.[17] The Josephson
coupling in between the adjacent superconducting ferro-
magnet domains is found to be different in comparison
with the usual Josephson coupling between two super-
conductors.
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