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Introduction

Formal statement of the problem

Trapping of spin and the logarithmic diffusion

Crossover to the open regime and the Gaussian damping

Unresolved questions



Experiments on cold atomic gasesExperiments on cold atomic gases



The systemThe system

Bose particles with spin in one dimension

Q1: What is the magnetic order in the ground state?
Q2:How do excitations propagate and interact?

Assume spin-independent interactions



The modelThe model

A system of 2S+1 – component  Bose particles with 
the Hamiltonian

The spin density operator:

is a spin operator
in the 2S+1 –dimensional
representation of SU(2)



Ground stateGround state

Truly 1D fermionic system cannot be ferromagnetic
[E.Lieb & D. Mattis, Phys. Rev. 125, 164 (1962)]

The ground state of a 1D itinerant Bose system is 
completely polarized
[see e.g. E. Eisenberg & E. H. Lieb, PRL 89, 220403 (2002) ]

We investigate the propagation of spin waves in a 1D Bose

ferromagnet

For spin-independent interactions



HydrodinamicsHydrodinamics and spinand spin--charge separationcharge separation

Paramagnetic/anti-ferromagnetic ground state:

b) Equations of motion – linear wave equation (sound waves)

c) Effective low-energy theory – Luttinger model for all coupling strenghts

a) Linear dispersion relation (for small wave vectors)

d) Spin-charge separation



HydrodinamicsHydrodinamics of a fully polarized fluidof a fully polarized fluid

Ferromagnetic ground state:

b) Parabolic dispersion relation for magnons

c) Spin-charge separation impossible. For system polarized along z

a) Linear dispersion relation for plasmons

How does a spin excitation propagate?



Longitudinal and transverse spin dynamicsLongitudinal and transverse spin dynamics

longitudinal spin excitations

transverse spin excitations



Longitudinal dynamicsLongitudinal dynamics

In a fully polarized`sector

In the limit of large x and t 



Longitudinal and transverse spin dynamicsLongitudinal and transverse spin dynamics

longitudinal spin excitations = sound waves for 
spinless particles

transverse spin excitations = ?



The LandauThe Landau--LifshitzLifshitz equationequation

Hamiltonian, the gradient expansion:

The local spin algebra:



The The linearizedlinearized LandauLandau--LifshitzLifshitz equationequation
Local ladder operators:

Linearized L-L equation:

Propagator of spin excitation:



The large distance problemThe large distance problem

The longer the distance the better the gradient expansion?

Restriction on the wavelength:

Emergence of a timescale



Diverging effective massDiverging effective mass

2S+1 - component bosons with spin-independent interaction

For Bethe-Ansatz solvable:
C. N. Yang, PRL 19, 1312 (1967);
M. Gaudin Phys. Lett. A 24, 55 (1967) 

J. N. Fuchs et. al.,PRL 95, 150402 (2005)



Strong repulsion limitStrong repulsion limit



Trapping of spin:Trapping of spin:

The “red” particle is trapped between two neighbors

The spin propagator ought to be localized in space



Logarithmic diffusion:Logarithmic diffusion:

1-st quantized path integral representation + bosonization
[L. Balents&G. Fiete, 2004]

Determinant representation&the asymptotic Riemann-
Hilbert problem [V. Cheianov&M. Zvonarev, 2004]



Operator                 counts the number of crossings!

Solution: from Solution: from spinfulspinful problem to problem to spinlessspinless

Word lines of the particles 

(path integral formalism):

Solid curves: spin up

come from

Dashed curve: spin down

comes from

Solid and dashed curves should not cross each other! – the only effect of spin

Only spinless fields!

Solid lines do not disappear        continuity equation:

V.V. Cheianov and M.B. Zvonarev, PRL 92, 176401 (2004);  
G.A. Fiete and L. Balents, PRL 93, 226401 (2004) 



Escaping the trapEscaping the trap

What happens for t>t* ?

Estimate for the escape time:

,

Perturbative treatment of tunneling processes?



The spectral representationThe spectral representation

The large-time asymptotic behavior is controlled by the 
singularities of the spectral function:



Threshold of spectral functionThreshold of spectral function

Above the threshold there is a continuum of states due 
to multiple production of longitudinal spin waves.



Scaling of spectral function at thresholdScaling of spectral function at threshold

Assumptions:
(a)

(b)

In the integrable case assumption (a) can be verified and
the function ∆(q) can be calculated explicitly



AsymptoticsAsymptotics of spin propagatorof spin propagator

Use saddle point approximation:



The main resultThe main result

by matching with the result

Improved estimate for the escape time:

No 1/γ corrections in the integrable case!!!

M. Zvonarev, V. Cheianov, T. Giamarchi (2007)
Shimul Akhanjee, Yaroslav Tserkovnyak (2007)



SpaceSpace--time diagram:time diagram:

For “logarithmic diffusion”

For Gaussian damping:



IntegrableIntegrable casecase

• Infinite hierarchy of local integrals of motion
• Wave functions are known explicitly 
• Simple classification of excitations in the large N limit
• In some cases form factors are also known explicitly

In the integrable case it is possible to reformulate 
the high energy problem at the threshold as a low
energy problem for a different local Hamiltonian



ExcitationsExcitations

Excitations are electron-hole
pairs + one massive particle 
(magnon)



PseudoPseudo--HamiltonianHamiltonian

A linear combination of local integrals of motion

• The same eigenstates
• The same classification of excitations
• Different dispersion relations

q

q



PseudoPseudo--Spectral FunctionSpectral Function

For the spectral function generated by pseudohamiltonian

Thus the problem of threshold exponent is mapped 
onto a IR problem for a pseudo-hamiltonian

q



Effective field theory: HamiltonianEffective field theory: Hamiltonian

From the analysis of finite-size scaling of spectrum:

R. G. Pereira, S. R. White, I. Affleck (2007);
V. Cheianov, M. Pustilnik (2007) 
A. Imambekov and L. Glazman (2007)



Solution to the effective theorySolution to the effective theory

The exponent in terms of scattering phases

Result for the low-energy scaling

Small q expansion:



Unresolved Issues

1. Perturbation theory around the TG regime
2. Relation to thermodynamics in the non-

integrable case
3. The effective theory
4. Adding local spin exchange terms to the 

Hamiltonian 
5. Increasing  dimensionality


