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1. Introduction

2. Ripples: Dirac fermions in curved space

3. Anomalous Quantum Hall Effect

4. Problem of minimal conductivity and
Zitterbewegung

5. Chiral tunneling and Klein paradox

6. Vacuum polarization of supercritical
charges
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Landau levels: Shubnikov-de
Haas, QHE

Landau and Peilerls: quantum
relativistic mechanics Is not
a mechanics

Landau and Pomeranchuk: {8 g
“Moscow zero” )
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Nanotubes




Crystal structure
of graphene
Two sublattices




Spectrum near K (K') points iIs linear.
Conical cross-points: provided by
symmetry and thus robust property




If Umklapp-processes K-K’ are neglected:
2D Dirac massless fermions with the Hamiltoni:

“Spin indices’” label sublatticed andB
rather than real spin




K. Novoselov et al,
Nature 2005;

Y. Zhang et al, Nature
2005

Square-root dependence
of the cyclotron mass

on the charge-carrier
concentration

+ anomalous QHE
(“Berry phase”)
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Bond order potential for carbon: LCBOPII
fitting to energy of

different molecules and solids, elastic

moduli, phase diagram, thermodynamics, etc.

Method: classical Monte-Carlo, crystallites with
N = 240, 960, 2160, 4860, 8640, and 19940

Temperatures: 300 K, 1000 K, and 3500 K
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FIG. 5: Radial distribution function for the N = 8640 sample at 1" = 300 K and 7" = 3500 K as

a function of interatomic distances in A. The arrows indicate the length of double (r = 1.31 A).

conjugated (r = 1.42 A) and single (r = 1.54 A) bonds.



RT: tendency
to formation of
single and double

bonds instead of
equivalent
conjugated bonds

Bending for
p “‘chemical” reasons




Deformation tensor in the plane

-4 - —
dr;, Jdwx; Ox; dv;  Ox; O

1 (Ou;  Ou;  OupOdup ~ Oh Oh )

coordinates in the plane

displacement vector

m displacements normal to the plane




Nearest-neighbour approximation: changes of
hopping integrals

H = vpo (—mv — ;A)

K and K’ points are shifted
In opposite directions;
Umklapp processes

CERMMERPIN - (o rc time-reversal
symmetry

Suppression of weak
localization?




En=[2encf BN+ 3 + 3)]V2

The lowest Landau level is at ZERO energy
and shared equally by electrons and holes




n (1072 cm-2)

Single-layer: half-integer
guantization since zero-
energy Landau level has
twice smaller degeneracy

Bilayer: integer quantization
but no zero- v plateau
(chiral fermions with
parabolic gapless spectrum)




Atlyah-Singer Index theorem: numberciiiral
MeAEes Withi zere energy. fanassies®irac
fermions with gatuge fielas

Conseqguence: ripples should not broaden
zero-energy Landau level




e Pseudomagnetic fields from the
ripples cannot broaden the LL:
topological protection

e Scalar potential fluctuations broaden

zero-enery level in more or less the
same way as for other LL’s.

Zero-energy LL should be narrower than all
other LL




Periodic pseudomagnetic field due to structure
modulation

()AL (x)
it(x)+At| (x)




120/—1«\}_'_/—\120 120

/_; FIG. 2: (Color online). Low energy states induced by a ripple
~ as shown in Fig.[1]. The average hopping is t| = 3eV. The
width of the ripple is 1200a = 168nm. The modulations of
the hoppings are: Top left, ot /t = 0, top right, ot/t = 0.02,
bottom left, dt/t = 0.04, bottom right, dt/t = 0.02, and a
periodic electrostatic potential of amplitude 0.02eV.




E(eV)

0.4 Zero-energy LL
X/ IS not broadened,
In contrast with
2 TR (he others

/;):’

FIG. 3: (Color online). As in Fig.[2], with a magnetic field
B =10 T. Top: K valley. Bottom: K’ valley.
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Midgap states (pseudo-Landau levels): infinite
compressibility due to o-functional DOS peak

Charge inhomogeneity opens the gap due to
modulation of electrostatic potential

Modulation of NNN

= hopping
e e SRl Similar effect but probably

B iE Nl (00 smalll: t'/t = 1/30.




Low-energy description:
Massive chiral fermions 0 _(p,— ip'___\_,)z 2m )

Berry phase 21 | .
— (py+ipy)2m 0

Consequences: anomalies of zero-energy Landau level In
QHE, mechanism of charge inhomogeneity...




no femperature
dependence
in the peak
between 3 and 80K

Zzero-gap
semiconductor




At zero doping there Is a finite minimal
conductivity approximatelg’/h per channel

(do not mix with guantization in
pallistic regime)

Amazing property of 2D massless

particles: finite conductivity for ideal

crystal — no scattering, no current
carriers!




Conductance =°/h Tr T per valley per spin

IS the transmission prebhanility matrix

The wave functions of massless
Dirac fermions at zero energy:

Boundary conditions determine the functions




Edge states near the top and bottom of the sam;




Leads rem depedrapnene

9
9 COS™ ¢ L -
t(ky)|” = —F——F———"Bsiho = k,/kp

cosh™(k,L,) — sin® ¢ '

The problem oi missingpi(e)”!




For Dirac particles the
current operator does
not commute with the
Hamiltonian of free-
motion

The reason:
Indeterminacy of the
electron coordinate
and electron-hole pair
creation at the
electron motion

J(t) =jo (1) + 1 () G

Jo(t) =ev Zﬁ 'pj)

ep = vp/hi is the particle frequency




Kubo fiermula for conductivity.

o0 3

1 o | ._
dte’" / d\ (j(t —1N)])

0 (w) = ﬂ

0 0

Indeterminacy €o due toZitterbewegung
Resulting static conductivity of order cila




Derivation of the Boltzmann kinetic equation with taking into
account Zitterbewegung:

General idea of coarse-grained description:
for normal metals

Method used: Nonequulibrium statistical operator (NSO)
approach

One postulates that there Is a closed set of equations for some
operators (“gross variables™), and this is enough to formulate
these equations (some small parameters, e.g., scattering
Potential, defect concentration, etc. are necessary)




Starightforward calculations up to the second-order in V results in
a complicated set of singular integral equations

U (1‘) — U OQ 5(1‘) (cutoff at a bandwidth is necessary)

Exponentially small energy _1/2®
scale appears, similar to the Qi< = €.
Kondo problem:

—"JT(TB

IS the Bornian conductivity
In units e4/h




e > > max(eg,T Zittebewegung Is
‘ ‘M‘ ( K ) negligible, classical

BE works!

Zero doping (minimal conductivity regime):




Electionicsineterestruciured-n-pjunclions eic.)

cannot prepagate threugh
potential barriers

can propagate (tunneling) but
probability decays exponentially with barrier
helight and width

can propagate
with the probabllity of order of unity (Klein
paradox)




Ultrarelativisic

Nonrelativistic




Irransmission prokanility.

Barrerwidth 100am

Electron concentration
outside barrier 0.5x18cn?2

Hole concentration
inside barrier 1x1%% cnr2
(red) and 3x1& cm? (blue)




A preblem:graphendransistor
can hanaly ve locked!

Possible solution: use:
graphenge

Transmission fobilayer;

parameters are the same as foig
previous slide




Back scattenng Is
ferbidden ferchiral
fermions! Magic
angle =0

magic angle for
bilayerexists!




Coulomb potential

Dimension analysis: induced charge density

n(r) = Ao(r) + B/r?

Linear screening theory: constant dielectric
function, screening charge focused at the
coordinate origin (only first term)




Rigorous expression for total potential

Vi(r) =Vo(r) + Vipa (1)

Thomas-Fermi theory

Vina (r) = - / dr'" =V Q) —n

€ |r_rf|




Effective impurity
charge

Inverse linear
screening radius

A very strong suppression: tens of times???




Thomas-Fermi theory is asymptotically
accurate Iin the large Z limit

Perturbatively (small Z) logarithmic
divergence at large r should be absent

for
B = Ze?’/hv.e > Y2 (in 3D case B>1).




Nalve arguments: Radius of atom R,
momentum h/R. case:

E(R) ~ h* ImR?- Ze?/R
Minimum gives a size of atom.

case: E(R) ~ hc*/R — Ze?/R
Either no bound state or fall on the center.

Z>170




p =2 Electron fall on the center

(A) Relativistic

5 fall-down
M<Ze/c

0

(D)  Tm ¢

Supercritical | Supercritical

Quasi-local states




Interference of scattered wave and wave

described electron fall to the centre leads to
oscillations of electron density
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. N sign (3
’n'p(:)l(p ) — W Z

m+3|<|B

N = 4 (two valleys, two spins)

Large (: replacing the sum by an integral
recover the Thomas-Fermi result

RG analysis:

with a finite screening radius (similar
to black hole horizon)




Relativistic effects are of crucial importance for
graphene physics and applications (minimal
conductivity, absence of localization, carbon
transistors...)

Specific of 2D systems: ripples

Exotic phenomena in everyday’s life (e.g., Klein

paradox, vacuum reconstruction)

Some interesting physics beyond particle physics
(e.g., bilayer — chiral fermions with parabolic
spectrum

Important: “finite-structure constant” is larger

than 1 (e.qg., strong suppression of Coulomb
potential due to “nullification”)







