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Landau and Landau and graphenegraphene

Unity of theoretical physics

Landau levels: Shubnikov-de 
Haas, QHE

Landau and Peierls: quantum 
relativistic mechanics is not
a mechanics

Landau and Pomeranchuk:
“Moscow zero”



Allotropes of CarbonAllotropes of Carbon

GrapheneGraphene: prototype : prototype 
truly 2D crystaltruly 2D crystal

NanotubesNanotubes FullerenesFullerenes

Diamond, Graphite



TightTight--binding description of the binding description of the 
electronic structureelectronic structure

Crystal structureCrystal structure
of of graphenegraphene::
Two Two sublatticessublattices



MasslessMasslessDiracDirac fermionsfermions

Spectrum near K (K’ ) points is linear. 
Conical cross-points: provided by 
symmetry and thus robust property

UndopedUndoped ElectronElectron HoleHole



MasslessMasslessDiracDirac fermions IIfermions II
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If Umklapp-processes K-K’ are neglected:
2D Dirac massless fermions with the Hamiltonian

“Spin indices’’ label sublatticesA and B
rather than real spinrather than real spin



Experimental confirmation: Experimental confirmation: SchubnikovSchubnikov
–– de Haas effect + anomalous QHEde Haas effect + anomalous QHE

K. Novoselov et al, 
Nature 2005; 

Y. Zhang et al, Nature 
2005

Square-root dependence
of the cyclotron mass
on the  charge-carrier
concentration 

+ anomalous QHE 
(“Berry phase”)



Ripples on Ripples on graphenegraphene: : DiracDirac
fermions in curved spacefermions in curved space

Freely suspendedFreely suspended
graphenegraphenemembranemembrane
is partially crumpledis partially crumpled

J. C. Meyer et al,J. C. Meyer et al,
Nature 446, 60 (2007)Nature 446, 60 (2007)

2D crystals in 3D space 2D crystals in 3D space 
cannot be flat, due to cannot be flat, due to 
bending instabilitybending instability



Computer simulations Computer simulations 

Bond order potential for carbon: LCBOPII
(Fasolino & Los 2003): fitting to energy of 
different molecules and solids, elastic
moduli, phase diagram, thermodynamics, etc.

Method: classical Monte-Carlo, crystallites with
N = 240, 960, 2160, 4860, 8640, and 19940

Temperatures: 300 K , 1000 K, and 3500 K

(Fasolino, Los & MIK, Nature Mater., Nov.2007)



A snapshotA snapshotfor room temperaturefor room temperature

Broad distribution of ripple sizes + some typical
length due to intrinsic tendency of carbon to be

bonded



Chemical bonds IChemical bonds I



Chemical bonds IIChemical bonds II

RT: tendency
to formation of 
single and double 
bonds instead of
equivalent 
conjugated bonds

Bending for 
“chemical” reasons



PseudomagneticPseudomagneticfields due to ripplesfields due to ripples

Deformation tensor in the plane

coordinates in the plane

displacement vector

displacements normal to the plane



PseudomagneticPseudomagneticfields IIfields II

Nearest-neighbour approximation: changes of
hopping integrals  

“Vector potentials” K and K’ points are shifted
in opposite directions;
Umklapp processes 
restore time-reversal 
symmetry

Suppression of weak
localization? 



E =0N =0

N =2

N =1

N =4
N =3

EN =[2ehc∗
2B(N + ½ ± ½)]1/2

E =hc∗k

E =0

pseudospin

The lowest Landau level is at ZERO energy
and shared equally by electrons and holes

hωC

Anomalous Quantum Hall Effect



Anomalous QHE in singleAnomalous QHE in single-- andand
bilayerbilayer graphenegraphene

Single-layer: half-integer
quantization since zero-
energy Landau level has 
twice smaller degeneracy

Bilayer: integer quantization
but no zero- ν plateau
(chiral fermions with
parabolic gapless spectrum)



HalfHalf--integer quantum Hall effect integer quantum Hall effect 
and and ““ index theoremindex theorem””

0/φφ=− −+ NN

AtiyahAtiyah--Singer index theorem: number of Singer index theorem: number of chiralchiral
modes with zero energy for modes with zero energy for masslessmasslessDiracDirac

fermions with gauge fieldsfermions with gauge fields

Simplest case: 2D, electromagnetic field

(magnetic flux in units of the flux quantum)

Consequence: ripples should not broaden
zero-energy Landau level



States with zero energyStates with zero energy

� Pseudomagnetic fields from the 
ripples cannot broaden the LL: 
topological protection

� Scalar potential fluctuations broaden
zero-enery level in more or less the 
same way as for other LL’s. 

Zero-energy LL should be narrower than all
other LL (experiment: J. Giesbers, U. Zeitler,
MIK et al, PRL 2007)



MidgapMidgapstates due to ripples states due to ripples 

Guinea, MIK & Vozmediano, PRB 2008

Periodic pseudomagnetic field due to structure
modulation





Zero-energy LL
is not broadened,
in contrast with 
the others



Mechanism of charge Mechanism of charge inhomogeneityinhomogeneity??

Midgap states (pseudo-Landau levels): infinite
compressibility due to δ-functional DOS peak

Charge inhomogeneity opens the gap due to
modulation of electrostatic potential

Modulation of NNN 
hopping (A.Castro Neto):

similar effect but probably
too small: t’/t ≈ 1/30.



Index theorem for Index theorem for bilayerbilayer graphenegraphene

0/2 φφ=− −+ NN (MIK and M. Prokhorova, PR B 2008)

Consequences: anomalies of zero-energy Landau level  in 
QHE, mechanism of charge inhomogeneity…

Low-energy description:
Massive chiral fermions
Berry phase 2π



Quantum-Limited Resistivity

no temperature 
dependence
in the peak

between 3 and 80K
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Problem of minimal conductivityProblem of minimal conductivity

At zero doping there is a finite minimal 
conductivity approximately e2/h per channel

Amazing property of 2D massless
particles:  finite conductivity for ideal 

crystal – no scattering,  no current 
carriers!

(do not mix with (do not mix with conductanceconductancequantization inquantization in
ballistic regime)ballistic regime)



LandauerLandauerformula approachformula approach

Conductance = e2/h Tr T per valley per spin

T T is the transmission probability matrixis the transmission probability matrix

The wave functions of massless
Dirac fermions at zero energy:
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Boundary conditions determine the functionsf



Landauer formula II
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Edge states near the top and bottom of the sample



LandauerLandauerformula IIIformula III

Leads from doped Leads from doped graphenegraphene

Conductivity per channel: Conductivity per channel: 

The problem of The problem of ““ missingmissingpi(epi(e))”” !!



Minimal conductivity Minimal conductivity andand
ZitterbewegungZitterbewegung

For Dirac particles the 
current operator does 
not commute with the 
Hamiltonian of free-
motion 

The reason: 
indeterminacy of the 
electron coordinate 
and electron-hole pair 
creation at the 
electron motion



Minimal conductivity Minimal conductivity andand
ZitterbewegungZitterbewegungIIII

Kubo formula for conductivityKubo formula for conductivity

Indeterminacy 0Indeterminacy 0••∞∞ due to due to ZitterbewegungZitterbewegung
Resulting static conductivity of order of eResulting static conductivity of order of e22/h/h



Quantum Quantum BoltzmannBoltzmannEquation I Equation I 

Derivation of the Boltzmann kinetic equation with taking into
account Zitterbewegung: M. Auslender & MIK, PRB (2007)

General idea of coarse-grained description: Kohn & Luttinger
1957 for normal metals

Method used: Nonequulibrium statistical operator (NSO) 
approach (Zubarev, Peletminskii…)

One postulates that there is a closed set of equations for some
operators (“gross variables”), and this is enough to formulate
these equations (some small parameters, e.g., scattering 
Potential, defect concentration, etc. are necessary)



Quantum Quantum BoltzmannBoltzmannEquation IIEquation II

Starightforward calculations up to the second-order in V results in 
a complicated set of singular integral equations (PR B 76, 235425 
(2007))

(cutoff at a bandwidth is necessary)

Exponentially small energy 
scale appears, similar to the 
Kondo problem:

is the Bornian conductivity
in units e2/h



Quantum Quantum BoltzmannBoltzmannEquation III Equation III 

Zittebewegung is
negligible, classical
BE works!

Zero doping (minimal conductivity regime):



Electronics:Electronics:heterostructuresheterostructures((pp--nn--pp junctions etc.)junctions etc.)

Classical particles:Classical particles:cannot propagate through cannot propagate through 
potential barrierspotential barriers
Quantum particles:Quantum particles:can propagate (tunneling) butcan propagate (tunneling) but
probability decays exponentially with barrierprobability decays exponentially with barrier
height and widthheight and width
UltrarelativisticUltrarelativisticquantum particles:quantum particles:can propagatecan propagate
with the probability of order of unity (Kleinwith the probability of order of unity (Klein
paradox)paradox)

ChiralChiral tunneling and Klein paradoxtunneling and Klein paradox



Klein paradox IIKlein paradox II

UltrarelativisicUltrarelativisic

NonrelativisticNonrelativistic

Tunnel effect: momentum and coordinate Tunnel effect: momentum and coordinate 
are complementary variables, kinetic and potentialare complementary variables, kinetic and potential
energy are not measurable simultaneouslyenergy are not measurable simultaneously

Relativistic case: even the Relativistic case: even the coordinate itselfcoordinate itselfis not is not 
measurable, particlemeasurable, particle--antiparticle pair creationantiparticle pair creation



Klein paradox IIIKlein paradox III

Transmission probabilityTransmission probability

Barrier width 100 Barrier width 100 nmnm

Electron concentrationElectron concentration
outside barrier 0.5x10outside barrier 0.5x1012 12 cmcm--22

Hole concentrationHole concentration
inside barrier 1x10inside barrier 1x101212 cmcm--2 2 

(red) and 3x10(red) and 3x101212 cmcm--22 (blue)(blue)



Klein paradox IVKlein paradox IV

A problem: A problem: graphenegraphenetransistor transistor 
can hardly be locked!can hardly be locked!

Possible solution: use Possible solution: use bilayerbilayer
graphenegraphene: : chiralchiral fermions withfermions with
parabolic spectrum parabolic spectrum –– no analogueno analogue
in particle physics!in particle physics!

Transmission for Transmission for bilayerbilayer; ; 
parameters are the same as for parameters are the same as for 
previous slideprevious slide



Klein paradox and the problem ofKlein paradox and the problem of
localizationlocalization

Back scattering isBack scattering is
forbidden for forbidden for chiralchiral
fermions! Magic fermions! Magic 
angle = 0angle = 0
NonuniversalNonuniversal
magic angle for magic angle for 
bilayerbilayerexists!exists!

Electrons cannot be locked by random potential Electrons cannot be locked by random potential 
relief neither for singerelief neither for singe--layer nor for layer nor for bilayerbilayer

graphenegraphene–– absence of localization and minimalabsence of localization and minimal
conductivity?!conductivity?!



Charge impurity in Charge impurity in graphenegraphene::
Vacuum polarization effectVacuum polarization effect

Coulomb potential

Linear screening theory: constant dielectric 
function, screening charge focused at the 
coordinate origin (only first term)

Dimension analysis: induced charge density

n(r) = Aδ(r) + B/r2



Nonlinear screeningNonlinear screening

Rigorous expression for total potential

Thomas-Fermi theory



Nonlinear screening Nonlinear screening –– ThomasThomas--
Fermi IIFermi II

Effective impurity 
charge

Inverse linear 
screening radius

A very strong suppression: tens of times???



General formulationGeneral formulation

Thomas-Fermi theory is asymptotically 
accurate in the large Z limit

Perturbatively (small Z) logarithmic 
divergence at large r should be absent

Key quantum-relativistic phenomenon:
electron fall at the Coulomb centre for
β = Ze2/ћvFε > ½ (in 3D case β > 1). 

(A. Shytov, MIK, L. Levitov, PRL 2007)



Method:Method:

Explicit solution of the Dirac-Kepler problem

Naive arguments: Radius of atom R, 
momentum ħ/R. Nonrelativistic case:
E(R) ~ ħ2 /mR2 – Ze2/R 
Minimum gives a size of atom.
Relativistic case: E(R) ~ ħc*/R – Ze2/R
Either no bound state or fall on the center.

Vacuum reconstruction at Z > 170



β > ½ Electron fall on the center 

Klein tunneling

Quasi-local states



Supercritical chargeSupercritical charge
Interference of scattered wave and wave  

described electron fall to the centre leads to 
oscillations of electron density

β = 0.6

Inset: 
oscillations 
for different
charges



Supercritical charge IISupercritical charge II

N = 4 (two valleys, two spins)

Large β: replacing the sum by an integral 
recover the Thomas-Fermi result

RG analysis: all supercritical charge is screened 
to β = ½ with a finite screening radius (similar 
to black hole horizon)



Conclusions and final remarksConclusions and final remarks
� Relativistic effects are of crucial importance for 

graphene physics and applications (minimal 
conductivity, absence of localization, carbon 
transistors…)

� Specific of 2D systems: ripples
� Exotic phenomena in everyday’s life (e.g., Klein 

paradox, vacuum reconstruction) 
� Some interesting physics beyond particle physics 

(e.g., bilayer – chiral fermions with parabolic 
spectrum

� Important: “finite-structure constant” is larger 
than 1 (e.g., strong suppression of Coulomb 
potential due to “nullification”)
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