Relativistic magnetotransport in graphene

Markus Müller

in collaboration with
Lars Fritz (Harvard)
Subir Sachdev (Harvard)
Jörg Schmalian (Iowa)

Landau Memorial Conference June 26, 2008
Outline

• Relativistic physics in graphene, quantum critical systems and conformal field theories
 → Relativistic signatures in magnetotransport: el.+th. conductivity, Peltier, Nernst effect etc.

• Hydrodynamic description
 → Collective, collision-broadened cyclotron resonance

• Boltzmann equation
 → Recover and refine hydrodynamics with Boltzmann
 → Describe relativistic-to-Fermi liquid crossover
 → Go beyond hydrodynamics
Dirac fermions in graphene

(Haldane ‘88, Semenoff ‘84)

Honeycomb lattice of C atoms
Dirac fermions in graphene
(Semenoff ’84, Haldane ‘88)

Honeycomb lattice of C atoms

Tight binding dispersion

2 massless Dirac cones in the Brillouin zone:
(Sublattice degree of freedom ↔ pseudospin)

Close to the two Fermi points K, K':

$$H \approx v_F (p - K) \cdot \sigma_{\text{sublattice}}$$

$$\rightarrow \quad E_k = v_F |k - K|$$
Dirac fermions in graphene

(Semenoff ’84, Haldane ’88)

Honeycomb lattice of C atoms

Tight binding dispersion

2 massless Dirac cones in the Brillouin zone:
(Sublattice degree of freedom ↔ pseudospin)

Fermi velocity (speed of light”)

$E_k = v_F |k - K|$
Dirac fermions in graphene

(Honeycomb lattice of C atoms)

Tight binding dispersion

2 massless Dirac cones in the Brillouin zone:
(Sublattice degree of freedom ↔ pseudospin)

Fermi velocity (speed of light”)

Coulomb interactions: Fine structure constant

\[H \approx v_F \left(p - K \right) \cdot \sigma_{\text{sublattice}} \]

\[E_k = v_F \left| k - K \right| \]

\[v_F \approx 1.1 \cdot 10^6 \text{ m/s} \approx \frac{c}{300} \]

\[\alpha \equiv \frac{e^2}{\varepsilon \hbar v_F} = O(1) \]
Relativistic fluid at the Dirac point

Expect relativistic plasma physics of interacting particles and holes!

\[\sqrt{n} \left(1 + \alpha \ln \left[\frac{\Lambda}{\sqrt{n}} \right] \right) \]

\[n \sim \Omega^+ \ln \left(\alpha \right) \]

\[\alpha \sim \frac{\Lambda}{\sqrt{n}} \]

Transport and phase diagram

Expect relativistic plasma physics of interacting particles and holes!
Transport and phase diagram

Expect relativistic plasma physics of interacting particles and holes!
Transport and phase diagram

Expect relativistic plasma physics of interacting particles and holes!
Transport and phase diagram

Expect relativistic plasma physics of interacting particles and holes!

Hydrodynamics?
$\omega \ll T$

Interaction limited transport

Disorder limited transport

$T(\text{K})$

10^{12}m/s
Conductivity in and across the relativistic regime?

Conductivity in and across the relativistic regime?

+ Magnetotransport? e.g., Hall, Nernst effect?

\[\sigma (e^2/h) \]

\[V_0 (V) \]

\[T(K) \]

\[10^{12}/m^2 \]

Other relativistic fluids:

- Bismuth (3d Dirac fermions with very small mass)
- Effective theories close to quantum phase transitions
- Conformal field theories
 E.g.: strongly coupled Non-Abelian gauge theories (QCD): tretament via AdS-CFT
Low energy effective theory at quantum phase transitions

Relativistic effective field theories $\leftrightarrow z = 1$; arise often due to particle-hole symmetry

Example: Superconductor-insulator transition (SIT)

Bhaseen, Green, Sondhi (PRL ’07).
Hartnoll, Kovtun, MM, Sachdev (PRB ’07)
SI-transition: Bose Hubbard model

Bose-Hubbard model

\[H = -t \sum \langle ij \rangle b_j^+ b_i + U \sum n_i^2 - \mu \sum n_i \]

Coupling

\[g \equiv \frac{t}{U} \] tunes the SI-transition

Diagram showing the Bose-Hubbard model's phase diagram with the quantum critical point (QCP) and the transition between commensurate Mott insulator and superfluid phases.
SI-transition: Bose Hubbard model

Bose-Hubbard model

\[H = -t \sum_{\langle ij \rangle} b_j^+ b_i + U \sum_i n_i^2 - \mu \sum_i n_i \]

Coupling

\[g \equiv \frac{t}{U} \] tunes the SI-transition

Effective action around \(g_c \) (\(\mu = 0 \)):

\[S = \int d^2rd\tau \left[| \partial_\tau \psi |^2 + v^2 \left| \vec{\nabla} \psi \right|^2 - g |\psi|^2 + \frac{u}{2} |\psi|^4 \right] \]
SI-transition: Bose Hubbard model

Bose-Hubbard model

\[H = -t \sum_{\langle ij \rangle} b_j^+ b_i + U \sum_i n_i^2 - \mu \sum_i n_i \]

Coupling

\[g = \frac{t}{U} \] tunes the SI-transition

Effective action around \(g_c \) (\(\mu = 0 \)):

\[S = \int d^2r d\tau \left[|\partial_\tau \psi|^2 + v^2 \left| \vec{\nabla} \psi \right|^2 - g |\psi|^2 + \frac{u}{2} |\psi|^4 \right] \]

\(\rightarrow \) Relativistic field theory in d=2+1
Questions

• **Transport characteristics** of the relativistic plasma in lightly doped graphene and close to quantum criticality?
Questions

- **Transport characteristics** of the relativistic plasma in lightly doped graphene and close to quantum criticality?

- How does the **relativistic regime** connect to **Fermi liquid** behavior at large doping?
Questions

• Transport characteristics of the relativistic plasma in lightly doped graphene and close to quantum criticality?

• How does the relativistic regime connect to Fermi liquid behavior at large doping?

• What is the range of validity of relativistic magneto-hydrodynamics?

• Beyond hydrodynamics?
Model of graphene

Graphene with Coulomb interactions and disorder

\[H = H_0 + H_1 + H_{\text{dis}} \]

Tight binding kinetic energy

\[
H_0 = \sum_{a=1}^{N} \int dx \left[\Psi_a^\dagger \left(i v_F \vec{\sigma} \cdot \vec{\nabla} + \mu \right) \Psi_a \right]
\]

\[
H_0 = \sum_{\lambda=\pm} \sum_{a=1}^{N} \int \frac{d^2 k}{(2\pi)^2} \lambda v_F k \gamma_{\lambda a}^\dagger (\vec{k}) \gamma_{\lambda a} (\vec{k})
\]
Model of graphene

Graphene with Coulomb interactions and disorder

Tight binding kinetic energy

\[H = H_0 + H_1 + H_{\text{dis}} \]

B-field:

\[i\vec{\nabla} \rightarrow i\vec{\nabla} - e\vec{A}/c \]

\[
H_0 = -\sum_{a=1}^{N} \int dx \left[\Psi_a^\dagger \left(iv_F \vec{\sigma} \cdot \vec{\nabla} + \mu \right) \Psi_a \right]
\]

\[
H_0 = \sum_{\lambda=\pm} \sum_{a=1}^{N} \int \frac{d^2k}{(2\pi)^2} \lambda v_F k \gamma_{\lambda a}^\dagger(k) \gamma_{\lambda a}(k)
\]
Model of graphene

Graphene with Coulomb interactions and disorder

\[H = H_0 + H_1 + H_{\text{dis}} \]

B-field:
\[\vec{i} \nabla \rightarrow \vec{i} \nabla - e\vec{A} / c \]

Tight binding kinetic energy

\(H_0 = - \sum_{a=1}^{N} \int dx \left[\Psi_{a}^\dagger \left(i v_F \vec{\sigma} \cdot \vec{\nabla} + \mu \right) \Psi_{a} \right] \)

\(H_0 = \sum_{\lambda=\pm} \sum_{a=1}^{N} \int \frac{d^2k}{(2\pi)^2} \lambda v_F k \gamma_{\lambda a}^\dagger(k) \gamma_{\lambda a}(k) \)

Coulomb interactions

\(H_1 = \frac{1}{2} \int \frac{d^2k_1}{(2\pi)^2} \frac{d^2k_2}{(2\pi)^2} \frac{d^2q}{(2\pi)^2} \Psi_{a}^\dagger(k_2 - q) \Psi_{a}(k_2) V(q) \Psi_{b}^\dagger(k_1 + q) \Psi_{b}(k_1) \)

\(V(q) = \frac{2\pi e^2}{\varepsilon |q|} \)
Model of graphene

Graphene with Coulomb interactions and disorder

Tight binding kinetic energy

\[H_0 = -\sum_{a=1}^{N} \int \! d\mathbf{x} \left[\Psi_a^\dagger \left(i v_F \mathbf{\sigma} \cdot \mathbf{\nabla} + \mu \right) \Psi_a \right] \]

Coulomb interactions

\[H_1 = \frac{1}{2} \int \! \frac{d^2k_1}{(2\pi)^2} \frac{d^2k_2}{(2\pi)^2} \frac{d^2q}{(2\pi)^2} \Psi_a^\dagger (\mathbf{k}_2 - \mathbf{q}) \Psi_a (\mathbf{k}_2) \Psi_b^\dagger (\mathbf{k}_1 + \mathbf{q}) \Psi_b (\mathbf{k}_1) \]

Coulomb marginally irrelevant!

\[V (q) = \frac{2\pi e^2}{\varepsilon |q|} \]

\[\alpha = \frac{e^2}{\varepsilon \hbar v_F} = O(1) \]

RG:

\[\frac{d\alpha}{dl} = -\frac{\alpha^2}{4} + \mathcal{O}(\alpha^3) \]

\[\alpha(T) = \frac{\alpha^0}{1 + (\alpha^0/4) \ln(\Lambda/T)} \sim \frac{4}{\ln(\Lambda/T)} \]
Model of graphene

Graphene with Coulomb interactions and disorder

\[H = H_0 + H_1 + H_{\text{dis}} \]

Tight binding kinetic energy

\[H_0 = -\sum_{a=1}^{N} \int dx \left[\bar{\Psi}_a \left(i v_F \vec{\sigma} \cdot \vec{\nabla} + \mu \right) \Psi_a \right] \]

\[H_0 = \sum_{\lambda=\pm} \sum_{a=1}^{N} \int \frac{d^2 k}{(2\pi)^2} \lambda v_F k \gamma_{\lambda a}^\dagger(k) \gamma_{\lambda a}(k) \]

Coulomb interactions

\[H_1 = \frac{1}{2} \int \frac{d^2 k_1}{(2\pi)^2} \frac{d^2 k_2}{(2\pi)^2} \frac{d^2 q}{(2\pi)^2} \Psi_{a}^\dagger(k_2 - q) \Psi_{a}(k_2) V(q) \Psi_{b}^\dagger(k_1 + q) \Psi_{b}(k_1) \]

Coulomb marginally irrelevant!

\[V(q) = \frac{2\pi e^2}{\varepsilon |q|} \]

Screening neglected (down by factor α)

B-field:

\[i \vec{\nabla} \rightarrow i \vec{\nabla} - e \vec{A} / c \]
Model of graphene

Graphene with Coulomb interactions and disorder

\[H = H_0 + H_1 + H_{\text{dis}} \]

B-field:
\[i\vec{\nabla} \rightarrow i\vec{\nabla} - e\vec{A}/c \]

Tight binding kinetic energy

\[H_0 = -\sum_{a=1}^{N} \int dx \left[\Psi_a^\dagger \left(iv_F \vec{\sigma} \cdot \vec{\nabla} + \mu \right) \Psi_a \right] \]

\[H_0 = \sum_{\lambda=\pm} \sum_{a=1}^{N} \int \frac{d^2 k}{(2\pi)^2} \frac{\lambda v_F k}{2} \gamma^\dagger_{\lambda a}(k) \gamma_{\lambda a}(k) \]

Coulomb interactions

\[H_1 = \frac{1}{2} \int \frac{d^2 k_1}{(2\pi)^2} \frac{d^2 k_2}{(2\pi)^2} \frac{d^2 q}{(2\pi)^2} \Psi_a^\dagger(k_2 - q) \Psi_a(k_2) V(q) \Psi_b^\dagger(k_1 + q) \Psi_b(k_1) \]

Coulomb marginally irrelevant!

\[V(q) = \frac{2\pi e^2}{\varepsilon |q|} \]

Screening neglected (down by factor \(\alpha \))

Disorder: charged impurities

\[H_{\text{dis}} = \int dx V_{\text{dis}}(x) \Psi_a^\dagger(x) \Psi_a(x) \]

\[V_{\text{dis}}(x) = \sum_i \delta(x - x_i) \frac{Ze^2}{\varepsilon |x - x_i|} \]
Time scales

1. Inelastic scattering rate
 (Electron-electron interactions)

 \[\tau_{ee}^{-1} \sim \alpha^2 \frac{k_B T}{\hbar} \frac{1}{\max[1, \mu/T]} \]

Relativistic regime ($\mu < T$):
Relaxation rate set by temperature,
like in quantum critical systems!
Time scales

1. Inelastic scattering rate
 (Electron-electron interactions)

 \[\tau_{ee}^{-1} \sim \alpha^2 \frac{k_B T}{\hbar} \frac{1}{\max[1, \mu/T]} \]

 Relativistic regime (\(\mu < T \)):
 Relaxation rate set by temperature,
 like in quantum critical systems!

2. Elastic scattering rate
 (Scattering from charged impurities)

 \[\tau_{\text{imp}}^{-1} \sim \frac{(Z e^2/\varepsilon)^2 \rho_{\text{imp}}}{\hbar} \frac{1}{\max[T, \mu]} \]

 Subdominant at high \(T \)
Time scales

1. Inelastic scattering rate
 (Electron-electron interactions)
 \[
 \tau_{ee}^{-1} \sim \alpha^2 \frac{k_B T}{\hbar} \frac{1}{\max[1, \mu/T]}
 \]
 Relativistic regime ($\mu < T$):
 Relaxation rate set by temperature,
 like in quantum critical systems!

2. Elastic scattering rate
 (Scattering from charged impurities)
 Subdominant at high T
 \[
 \tau_{ee}^{-1} \sim \alpha^2 \frac{k_B T}{\hbar}
 \]
 \[
 \tau_{imp}^{-1} \sim \left(\frac{Ze^2}{\epsilon}\right)^2 \frac{1}{\rho_{imp}} \frac{1}{\hbar} \max[T, \mu]
 \]

3. Deflection rate due to magnetic field
 (Cyclotron frequency of non-interacting
 particles with typical thermal energy)
 \[
 \tau_B^{-1} \sim \omega_c^{\text{typ}} \sim \frac{eBv_F^2}{\max[T, \mu]}
 \]
Regimes

1. Hydrodynamic regime: (collision-dominated)

\[\tau_{ee}^{-1} \gg \tau_{imp}^{-1}, \tau_{B}^{-1}, \Omega \]
1. Hydrodynamic regime:
(collision-dominated)

\[
\tau_{ee}^{-1} \gg \tau_{imp}^{-1}, \tau_B^{-1}, \omega
\]

2. Ballistic magnetotransport
(large field limit)

\[
\tau_B^{-1} > \tau_{ee}^{-1} >> \tau_{imp}^{-1}, \omega
\]

Regimes

Regimes

1. Hydrodynamic regime: (collision-dominated)

\[\tau_{\text{ee}}^{-1} \gg \tau_{\text{imp}}^{-1}, \tau_{B}^{-1}, \omega \]

2. Ballistic magnetotransport (large field limit)

\[\tau_{B}^{-1} > \tau_{\text{ee}}^{-1} \gg \tau_{\text{imp}}^{-1}, \omega \]

3. Disorder limited transport (inelastic scattering ineffective due to nearly conserved momentum)

\[\mu \gg T \]

\[\tau_{\text{ee}}^{-1} \geq \tau_{\text{imp}}^{-1} \]
Hydrodynamic Approach
Hydrodynamics

Hydrodynamic collision-dominated regime

Long times, Large scales

\[t \gg \tau_{ee} \]

\[\tau_{ee}^{-1} \gg \tau_{\text{imp}}^{-1}, \tau_{B}^{-1}, \omega \]
Hydrodynamics

Hydrodynamic collision-dominated regime

- Local equilibrium established: $T_{loc}(r), \mu_{loc}(r); \vec{u}_{loc}(r)$
- Study relaxation towards global equilibrium
- Slow modes: Diffusion of the density of conserved quantities:
 - Charge
 - Momentum
 - Energy

Long times, Large scales

$t \gg \tau_{ee}$

$\tau_{ee}^{-1} \gg \tau_{imp}^{-1}, \tau_{B}^{-1}, \omega$
Relativistic Hydrodynamics

Energy-momentum tensor

\[T^{\mu\nu} = (\varepsilon + P)u^\mu u^\nu + Pg^{\mu\nu} + \tau^{\mu\nu} \]

Current 3-vector

\[J^\mu = \rho u^\mu + \nu^\mu \]

- \(u^\mu \): Energy velocity: \(u^\mu = (1,0,0) \rightarrow \) No energy current
- \(\nu^\mu \): Dissipative current ("heat current")
- \(\tau^{\mu\nu} \): Viscous stress tensor (Reynold’s tensor)
Relativistic Hydrodynamics

Energy-momentum tensor

\[T^{\mu\nu} = (\varepsilon + P)u^\mu u^\nu + P g^{\mu\nu} + \tau^{\mu\nu} \]

Current 3-vector

\[J^\mu = \rho u^\mu + \nu^\mu \]

- \(u^\mu \): Energy velocity: \(u^\mu = (1,0,0) \) → No energy current
- \(\nu^\mu \): Dissipative current (“heat current”)
- \(\tau^{\mu\nu} \): Viscous stress tensor (Reynold’s tensor)

+ Thermodynamic relations

\[\varepsilon + P = Ts + \mu \rho, \quad d\varepsilon = T ds + \mu d\rho, \]
Relativistic Hydrodynamics

\[J^\mu = \rho u^\mu + \nu^\mu \]

\[T^{\mu\nu} = (\varepsilon + P)u^\mu u^\nu + P g^{\mu\nu} + \tau^{\mu\nu} \]

Conservation laws (equations of motion):

\[\partial_\mu J^\mu = 0 \]

Charge conservation
Relativistic Hydrodynamics

\[J^\mu = \rho u^\mu + v^\mu \]

\[T^{\mu\nu} = (\varepsilon + P)u^\mu u^\nu + Pg^{\mu\nu} + \tau^{\mu\nu} \]

Conservation laws (equations of motion):

\[\partial_\mu J^\mu = 0 \quad \text{Charge conservation} \]

Energy/momentum conservation

\[\partial_\nu T^{\mu\nu} = F^{\mu\nu}J_\nu + \frac{1}{\tau_{\text{imp}}} T^{0\nu} \delta^{\mu 0} \]

\[F^{\mu\nu} = \begin{pmatrix} 0 & E_x & E_y \\ -E_x & 0 & B \\ -E_y & -B & 0 \end{pmatrix} \]

\[\vec{E} = -i\frac{2\pi}{|k|} \rho_k \quad \text{Coulomb interaction} \]
Relativistic Hydrodynamics

\[J^\mu = \rho u^\mu + \nu^\mu \]

\[T^{\mu \nu} = (\varepsilon + P)u^\mu u^\nu + Pg^{\mu \nu} + \tau^{\mu \nu} \]

Conservation laws (equations of motion):

\[\partial_\mu J^\mu = 0 \]

Charge conservation

Energy/momentum conservation

\[\partial_\nu T^{\mu \nu} = F^{\mu \nu}J_\nu + \frac{1}{\tau_{\text{imp}}} T^{0\nu} \delta_{\mu 0} \]

\[F^{\mu \nu} = \begin{pmatrix} 0 & E_x & E_y \\ -E_x & 0 & B \\ -E_y & -B & 0 \end{pmatrix} \]

\[\vec{E} = -i\vec{k} \frac{2\pi}{|k|} \rho_{\vec{k}} \]

Coulomb interaction

Heat current and viscous tensor?
Relativistic Hydrodynamics

Heat current and viscous tensor?

Heat current \(Q^\mu = (\varepsilon + P)u^\mu - \mu J^\mu \)

\(\rightarrow \) Entropy current \(S^\mu = Q^\mu / T \)

Landau-Lifschitz, Relat. plasma physics
Heat current and viscous tensor?

Heat current \(Q^\mu = (\varepsilon + P)u^\mu - \mu J^\mu \)

→ Entropy current \(S^\mu = Q^\mu / T \)

\[\partial_\mu S^\mu \equiv A_\alpha \left(\partial T, \partial \mu, F^{\mu \nu} \right) \nu^\alpha + B_\alpha \beta \left(\partial T, \partial \mu, F^{\mu \nu} \right) \tau^{\alpha \beta} \geq 0 \]

\[\Rightarrow \nu^\mu = \text{const.} \times A^\mu \left(\partial T, \partial \mu, \partial u; F^{\mu \nu} \right) \]

\[\tau^{\mu \nu} = \text{const.} \times B^{\mu \nu} + \text{const.} \times \delta^{\mu \nu} B^\alpha_\alpha \]
Relativistic Hydrodynamics

Heat current and viscous tensor?

Heat current \(Q^\mu = (\varepsilon + P)u^\mu - \mu J^\mu \)

→ Entropy current \(S^\mu = Q^\mu / T \)

Positivity of entropy production (Second law):

\[
\partial_\mu S^\mu \equiv A_\alpha (\partial T, \partial \mu, F^{\mu \nu}) \nu^\alpha + B_{\alpha \beta} (\partial T, \partial \mu, F^{\mu \nu})\tau^{\alpha \beta} \geq 0
\]

⇒ \(\nu^\mu = \text{const.} \times A^\mu (\partial T, \partial \mu, \partial u; F^{\mu \nu}) \)

\[
\tau^{\mu \nu} = \text{const.} \times B^{\mu \nu} + \text{const.} \times \delta^{\mu \nu} B^\alpha_\alpha
\]
Relativistic Hydrodynamics

Heat current and viscous tensor?

Heat current \(Q^\mu = (\varepsilon + P)u^\mu - \mu J^\mu \)

→ Entropy current \(S^\mu = Q^\mu / T \)

\[\partial_\mu S^\mu \equiv A_\alpha \left(\partial T, \partial \mu, F^{\mu\nu} \right) \nu^\alpha + B_{\alpha\beta} \left(\partial T, \partial \mu, F^{\mu\nu} \right) \tau^{\alpha\beta} \geq 0 \]

\[\Rightarrow \nu^\mu = \text{const.} \times A^\mu \left(\partial T, \partial \mu, \partial u; F^{\mu\nu} \right) \]

\[\tau^{\mu\nu} = \text{const.} \times B^{\mu\nu} + \text{const.} \times \delta^{\mu\nu} B^\alpha \]

\[\nu^\mu = \sigma Q \left(g^{\mu\nu} + u^\mu u^\nu \right) \left[- \partial_\nu \mu + F_\nu^{\lambda \mu} u^\lambda \right] + \mu \frac{\partial T}{T} \]

\[\tau^{\mu\nu} = - (g^{\mu\lambda} + u^\mu u^\lambda) \left[\eta \left(\partial_\lambda u^\nu + \partial^\nu u_\lambda \right) + (\zeta - \eta) \delta^\nu_\lambda \partial_\sigma u^\sigma \right] \]
Heat current and viscous tensor?

Heat current \[Q^\mu = (\varepsilon + P)u^\mu - \mu J^\mu \]

→ Entropy current \[S^\mu = Q^\mu / T \]

Positivity of entropy production (Second law):

\[\partial_\mu S^\mu \equiv A_\alpha \left(\partial T, \partial \mu, F^{\mu\nu} \right) \nu^\alpha + B_{\alpha\beta} \left(\partial T, \partial \mu, F^{\mu\nu} \right) \tau^{\alpha\beta} \geq 0 \]

\[\Rightarrow \nu^\mu = \text{const.} \times A^\mu \left(\partial T, \partial \mu, \partial u; F^{\mu\nu} \right) \]

\[\tau^{\mu\nu} = \text{const.} \times B^{\mu\nu} + \text{const.} \times \delta^{\mu\nu} B_\alpha^\alpha \]

\[\nu^\mu = \sigma_Q (g^{\mu\nu} + u^\mu u^\nu) \left[- \partial_\nu \mu + F_{\nu\lambda} u^\lambda + \mu \frac{\partial T}{T} \right] \]

\[\tau^{\mu\nu} = - (g^{\mu\lambda} + u^\mu u^\lambda) [\eta (\partial_\lambda u^\nu + \partial^\nu u_\lambda) + (\zeta - \eta) \delta^{\nu}_{\lambda} \partial_\alpha u^\alpha] \]

\[B \text{ small!} \]
Relativistic Hydrodynamics

Heat current and viscous tensor?

Heat current \(Q^\mu = (\varepsilon + P)u^\mu - \mu J^\mu \)

\[\rightarrow \text{Entropy current} \quad S^\mu = Q^\mu / T \]

\[\partial_\mu S^\mu \equiv A_\alpha \left(\partial T, \partial \mu, F^{\mu \nu} \right) \nu^\alpha + B_{\alpha \beta} \left(\partial T, \partial \mu, F^{\mu \nu} \right) \tau^{\alpha \beta} \geq 0 \]

\[\Rightarrow \nu^\mu = \text{const.} \times A^\mu \left(\partial T, \partial \mu, \partial u; F^{\mu \nu} \right) \]

\[\tau^{\mu \nu} = \text{const.} \times B^{\mu \nu} + \text{const.} \times \delta^{\mu \nu} B^\alpha_\alpha \]

\[\nu^\mu = \sigma_Q \left(g^{\mu \nu} + u^\mu u^\nu \right) \left[- \partial_\nu \mu + F_{\nu \lambda} u^\lambda + \mu \frac{\partial \mu T}{T} \right] \]

\[\tau^{\mu \nu} = - \left(g^{\mu \lambda} + u^\mu u^\lambda \right) \left[\eta (\partial_\lambda u^\nu + \partial^\nu u_\lambda) + (\zeta - \eta) \delta^{\nu \lambda} \partial_\alpha u^\alpha \right] \]

Irrelevant for response at \(k \to 0 \)
Relativistic Hydrodynamics

Heat current and viscous tensor?

Heat current\[Q^\mu = (\varepsilon + P)u^\mu - \mu J^\mu \]

→ Entropy current\[S^\mu = Q^\mu / T \]

Positivity of entropy production (Second law):
\[\partial_\mu S^\mu = A_\alpha (\partial T, \partial \mu, F^{\mu \nu}) \nu^\alpha + B_{\alpha \beta} (\partial T, \partial \mu, F^{\mu \nu}) \tau^{\alpha \beta} \geq 0 \]
\[\Rightarrow \nu^\mu = \text{const.} \times A^{\mu} (\partial T, \partial \mu, \partial u; F^{\mu \nu}) \]
\[\tau^{\mu \nu} = \text{const.} \times B^{\mu \nu} + \text{const.} \times \delta^{\mu \nu} B_\alpha^\alpha \]

Irrelevant for response at \(k \to 0 \)

One single transport coefficient (instead of two)!
Meaning of σ_Q?

• Dimension of electrical conductivity

• At zero doping (particle-hole symmetry):

$$\sigma_Q = \sigma_{xx}(\rho_{\text{imp}} = 0)$$

= Universal d.c. conductivity of the pure system

Why is $\sigma_{xx}(\rho_{\text{imp}} = 0)$ finite??
Universal conductivity σ_Q

Standard situation: No particle-hole symmetry ($\rho \neq 0$)

- Current is carried predominantly by majority carriers
- Finite current implies finite momentum:

\[
\vec{J} \neq 0, \quad \vec{J}^E \neq 0
\]

- In the absence of impurities:
 Momentum conservation implies infinite conductivity!
Universal conductivity σ_Q

Particle-hole symmetry ($\rho = 0$)

- Key: Charge current without momentum (energy current)!

$\vec{J} \neq 0$, $\vec{P} = 0$

- Finite “quantum critical” conductivity!

Pair creation/annihilation leads to current decay

(particle) \quad \rightarrow \quad (hole)

\[\vec{J} \neq 0, \quad \vec{P} = 0 \]
Universal conductivity σ_0

Quantum critical situation: Particle-hole symmetry ($\rho = 0$)

- Key: Charge current without momentum (energy current)

\(\vec{J} \neq 0, \quad \vec{P} = 0 \)

- Finite “quantum critical” conductivity!
- As in quantum criticality:
 Relaxation time set by temperature alone

\[
\tau_{ee} \approx \frac{\hbar}{\alpha^2 k_B T}
\]

Pair creation/annihilation leads to current decay

(pair) \rightarrow (hole)
Universal conductivity σ_Q

Quantum critical situation: Particle-hole symmetry ($\rho = 0$)

- Key: Charge current without momentum (energy current)

\[\vec{J} \neq 0, \quad \vec{P} = 0 \]

- Finite “quantum critical” conductivity!
- As in quantum criticality:
 Relaxation time set by temperature alone

\[\tau_{ee} \approx \frac{\hbar}{\alpha^2 k_B T} \]

\[\sigma_{\text{Drude}} = \frac{e}{m} \rho \tau \rightarrow \sigma_Q \sim \frac{e}{k_B T / \nu^2} \left(e \frac{(k_B T)^2}{(\hbar \nu)^2} \right) \frac{\hbar}{\alpha^2 k_B T} \sim \frac{1}{\alpha^2} \frac{e^2}{\hbar} \]

→ Universal conductivity
Universal conductivity σ_Q

Quantum critical situation: Particle-hole symmetry ($\rho = 0$)

- Key: Charge current without momentum (energy current)
- Finite “quantum critical” conductivity!
- As in quantum criticality:
 Relaxation time set by temperature alone

\[\tilde{J} \neq 0, \quad \tilde{P} = 0 \]

\[\tau_{ee} \approx \frac{\hbar}{\alpha^2 k_B T} \]

\rightarrow Universal conductivity

Exact (Boltzmann)

\[\sigma_Q(\mu = 0) = \frac{0.76}{\alpha^2 k_B T} \]
Universal conductivity \(\sigma_Q \)

\[K. \text{ Damle, S. Sachdev, (1996).} \]

Quantum critical situation: Particle-hole symmetry \((\rho = 0)\)

- Key: Charge current without momentum (energy current)

\[(\text{particle}) \quad \text{ } \quad (\text{hole}) \]

\(\vec{J} \neq 0, \quad \vec{P} = 0 \)

- Finite “quantum critical” conductivity!
- As in quantum criticality: Relaxation time set by temperature alone

\[\tau_{ee} \approx \frac{\hbar}{\alpha^2 k_B T}\]

\[\sigma_{\text{Drude}} = \frac{e}{m} \rho \tau \rightarrow \sigma_Q \sim \frac{e}{k_B T/\sqrt{2}} \left(\frac{e (k_B T)^2}{(\hbar \nu)^2} \right) \frac{\hbar}{\alpha^2 k_B T} \sim \frac{1}{\alpha^2} \frac{e^2}{h}\]

\[\sigma_Q(\mu = 0) = \frac{0.76}{\alpha^2} \frac{e^2}{h}\]

Marginal irrelevance of Coulomb:

\[\alpha \approx \frac{4}{\log(\Lambda/T)}\]
Thermoelectric response

Charge and heat current:

\[J^\mu = \rho u^\mu - \nu^\mu \]
\[Q^\mu = (\varepsilon + P) u^\mu - \mu J^\mu \]

Thermo-electric response

\[
\begin{pmatrix}
\hat{J} \\
\hat{Q}
\end{pmatrix} =
\begin{pmatrix}
\hat{\sigma} & \hat{\alpha} \\
T\hat{\alpha} & \hat{\kappa}
\end{pmatrix}
\begin{pmatrix}
\vec{E} \\
-\nabla T
\end{pmatrix}
\]

\[\hat{\sigma} =
\begin{pmatrix}
\sigma_{xx} & \sigma_{xy} \\
-\sigma_{xy} & \sigma_{xx}
\end{pmatrix}
\]

etc.
Thermoelectric response

Charge and heat current:

\[J^\mu = \rho u^\mu - \nu^\mu \]
\[Q^\mu = (\varepsilon + P)u^\mu - \mu J^\mu \]

Thermo-electric response

\[
\begin{pmatrix}
\hat{J} \\
\hat{Q}
\end{pmatrix} =
\begin{pmatrix}
\hat{\sigma} & \hat{\alpha} \\
T\hat{\alpha} & \frac{\hat{\kappa}}{\kappa}
\end{pmatrix}
\begin{pmatrix}
\hat{E} \\
-\nabla T
\end{pmatrix}
\]
\[\hat{\sigma} =
\begin{pmatrix}
\sigma_{xx} & \sigma_{xy} \\
-\sigma_{xy} & \sigma_{xx}
\end{pmatrix}
\]

etc.

i) Solve linearized hydrodynamic equations
ii) Read off the response functions (Kadanoff & Martin 1960)
Results from Hydrodynamics
Response functions at B=0

Symmetry $z \rightarrow -z : \quad \sigma_{xy} = \alpha_{xy} = \kappa_{xy} = 0$

Longitudinal conductivity:

$$\sigma_{xx}(\omega, k; B = 0) = \left(\sigma_Q + \frac{\rho^2 \tau}{P + \epsilon_1 - i\omega\tau} \right)$$

Universal conductivity at the quantum critical point $\rho = 0$

Drude-like conductivity, divergent for

Momentum conservation ($\rho \neq 0$)! $\tau \rightarrow \infty, \omega \rightarrow 0, \rho \neq 0$
Response functions at B=0

Symmetry $z \rightarrow -z$: $\sigma_{xy} = \alpha_{xy} = \kappa_{xy} = 0$

Longitudinal conductivity:

$$\sigma_{xx}(\omega, k; B = 0) = \left(\sigma_Q + \frac{\rho^2}{P + \varepsilon 1 - i\omega \tau}\right) \left[1 - i\frac{g k}{\omega}\left(\sigma_Q + \frac{\tau}{1 - i\omega \tau} \frac{\rho^2}{P + \varepsilon}\right)\right] + \mathcal{O}(k^2)$$

Coulomb correction ($g = 2\pi e^2$)
Response functions at $B=0$

Symmetry $z \rightarrow -z : \quad \sigma_{xy} = \alpha_{xy} = \kappa_{xy} = 0$

Longitudinal conductivity:

$$\sigma_{xx}(\omega, k; B = 0) = \left(\sigma_Q + \frac{\rho^2}{P + \varepsilon(1 - i\omega\tau)} \right) \left[1 - \frac{i g k}{\omega} \left(\sigma_Q + \frac{\tau}{1 - i\omega\tau} \frac{\rho^2}{P + \varepsilon} \right) \right] + O(k^2)$$

Thermal conductivity:

$$\kappa_{xx}(\omega, k; B = 0) = \sigma_Q \frac{\mu^2}{T} + \frac{s^2 \tau}{P + \varepsilon(1 - i\omega\tau)} + O(k^2).$$

Relativistic Wiedemann-Franz-like relations between σ and κ in the quantum critical window!
Response functions at B=0

Symmetry $z \rightarrow -z$: $\sigma_{xy} = \alpha_{xy} = \kappa_{xy} = 0$

Longitudinal conductivity:

$$\sigma_{xx}(\omega, k; B = 0) = \left(\sigma_Q + \frac{\rho^2}{P + \varepsilon 1 - i\omega\tau}\right) \left[1 - \frac{igk}{\omega} \left(\sigma_Q + \frac{\tau}{1 - i\omega\tau} \frac{\rho^2}{P + \varepsilon}\right)\right] + O(k^2)$$

Coulomb correction $(g = 2\pi e^2)$

Thermopower:

$$\alpha_{xx}(\mu, \omega = 0) = -\frac{\pi^2}{3e} k_B^2 T \frac{d\sigma(\mu, \omega = 0)}{d\mu}$$

Relativistic fluid!

Only valid in the Fermi liquid regime, but violated in the relativistic window.
B > 0: Cyclotron resonance

E.g.: Longitudinal conductivity

\[\sigma_{xx}(\omega) = \sigma_Q \frac{\omega \left(\omega + i\gamma + i\omega_c^2/\gamma \right)}{\left(\omega + i\gamma \right)^2 - \omega_c^2} \]

Poles in the response

\[\omega = \pm \omega_c^{QC} - i\gamma - i/\tau \]

Collective cyclotron frequency of the relativistic plasma

\[\omega_c^{QC} = \frac{\rho B}{(\epsilon + P)/v_F^2} \leftrightarrow \omega_c^{FL} = \frac{e B}{m} \]
B > 0 : Cyclotron resonance

E.g.: Longitudinal conductivity

\[\sigma_{xx}(\omega) = \sigma_Q \frac{\omega (\omega + i\gamma + i\omega_c^2 / \gamma)}{(\omega + i\gamma)^2 - \omega_c^2} \]

Poles in the response

\[\omega = \pm \omega_c^{QC} - i\gamma - i/\tau \]

Collective cyclotron frequency of the relativistic plasma

\[\omega_c^{QC} = \frac{\rho B}{(\varepsilon + P)/v_F^2} \quad \leftrightarrow \quad \omega_c^{FL} = \frac{e B}{m} \]

Intrinsic, interaction-induced broadening

(\leftrightarrow Galilean invariant systems:
No broadening due to Kohn’s theorem)

\[\gamma = \sigma_Q \frac{B^2}{(\varepsilon + P)/v_F^2} \]
B > 0 : Cyclotron resonance

Longitudinal conductivity

$$\sigma_{xx}(\omega, k) = \sigma_Q \frac{(\omega + i/\tau) (\omega + i/\tau + i\gamma + i\omega_c^2/\gamma)}{(\omega + i/\tau + i\gamma)^2 - \omega_c^2}$$

Poles in the response

$$\omega = \pm \omega_Q - i\gamma - i/\tau$$
Can the resonance be observed?

\[\omega = \pm \omega_c - i\gamma - i/\tau \]

\[v_F = 1.1 \cdot 10^6 \text{ m/s} \approx c/300 \]

Conditions to observe collective cyclotron resonance

- Collison-dominated regime
 \[\hbar \omega_c \ll \alpha^2 k_B T \]

- Small broadening
 \[\gamma, \tau^{-1} < \omega_c \]

- Quantum critical regime
 \[\rho \leq \rho_{th} = \frac{(k_B T)^2}{(h v_F)^2} \]

- High T: no Landau quantization
 \[E_{LL} = h \nu_F \sqrt{\frac{2eB}{hc}} \ll k_B T \]

Parameters:

- \(T \approx 300K \)
- \(B \approx 0.1T \)
- \(\rho \approx 10^{11} \text{ cm}^{-2} \)
- \(\omega_c \approx 10^{13} \text{ s}^{-1} \)
Does relativistic hydrodynamics apply?

- Do T and μ not break relativistic invariance?
- Validity at large chemical potential?
- Beyond linearization in magnetic field?
- Treatment of disorder?
Boltzmann Approach

MM, L. Fritz, and S. Sachdev, cond-mat 0805.1413.

→ Recover and refine the hydrodynamic description

→ Describe relativistic-to-Fermi-liquid crossover

→ Go beyond hydrodynamics
\(\sigma_Q \text{ from Boltzmann} \)

L. Fritz, J. Schmalian, MM, and S. Sachdev, condmat 0802.4289

Boltzmann equation in Born approximation

\[
\left(\partial_t + e[E + v \times B] \cdot \frac{\partial}{\partial k} \right) f_{\pm}(k, t) = \alpha^2 I_{\text{coll}}^{\text{Cb}}[k, t \mid \{f_{\pm}(k', t)\}] + \Delta I_{\text{coll}}^{\text{dis}}[k, t \mid \{f_{\pm}(k', t)\}]
\]

\[
\begin{array}{lllllll}
\text{a.)} & +, i \\
& \quad & & \quad & & \quad & \\
& -, i & -, i & -, i & -, i & -, j & -, j \\
\end{array}
\]

\[
\begin{array}{lllllll}
\text{b.)} & +, i \\
& \quad & & \quad & & \quad & \\
& +, i & +, i & +, i & +, j & +, j \\
\end{array}
\]
\(\sigma_Q \) from Boltzmann

L. Fritz, J. Schmalian, MM, and S. Sachdev, condmat 0802.4289

Boltzmann equation in Born approximation

\[
\left(\frac{\partial}{\partial t} + e [E + v \times B] \cdot \frac{\partial}{\partial k} \right) f_\pm (k, t) = \alpha^2 I^{Cb}_{\text{coll}} [k, t \mid \{ f_\pm (k', t) \}] + \Delta I^{\text{dis}}_{\text{coll}} [k, t \mid \{ f_\pm (k', t) \}]
\]

Linearization:

\[
f_\pm (k, t) = f_{\pm}^{eq} (k, t) + \delta f_\pm (k, t)
\]
\[\sigma_Q \text{ from Boltzmann} \]

L. Fritz, J. Schmalian, MM, and S. Sachdev, condmat 0802.4289

Boltzmann equation in Born approximation

\[
\left(\partial_t + e [E + v \times B] \cdot \nabla \right) f_\pm (k, t) = \alpha^2 I_{\text{coll}}^\text{Cb} [k, t | \{ f_\pm (k', t) \}] + \Delta I_{\text{coll}}^\text{dis} [k, t | \{ f_\pm (k', t) \}]
\]

Linearization:

\[
f_\pm (k, t) = f_{\pm}^{eq} (k, t) + \delta f_\pm (k, t)
\]

Great simplification: Divergence of forward scattering amplitude in 2d

At p-h symmetry:

\[
f_\pm (k, t) = f_{\pm}^{eq} (k, \mu \rightarrow \mu_{eq} + \delta \mu (t)) ; \quad \delta \mu = C(t) \frac{E \cdot k}{k}
\]

→ Equilibration along unidimensional spatial directions
\(\sigma_Q \) from Boltzmann

L. Fritz, J. Schmalian, MM, and S. Sachdev, condmat 0802.4289

Boltzmann equation in Born approximation

\[
\left(\partial_t + e [E + v \times B] \cdot \frac{\partial}{\partial k} \right) f_\pm (k, t) = \alpha^2 I_{\text{coll}}^{Cb} [k, t \mid \{ f_\pm (k', t) \}] + \Delta I_{\text{coll}}^{\text{dis}} [k, t \mid \{ f_\pm (k', t) \}]
\]

Linearization:

\[
f_\pm (k, t) = f_\pm^{eq} (k, t) + \delta f_\pm (k, t)
\]

Great simplification: Divergence of forward scattering amplitude in 2d

\[
\text{Amp} \left[\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \end{array} \right] \rightarrow \infty
\]

→ Equilibration along unidimensional spatial directions

At p-h symmetry:

\[
f_\pm (k, t) = f_\pm^{eq} (k, \mu \rightarrow \mu_{eq} + \delta \mu (t)) \quad \delta \mu = C(t) \frac{E \cdot k}{\hbar}
\]

\[
\sigma_Q (\mu = 0) \approx \frac{0.76 \, e^2}{\alpha^2 \, \hbar}
\]
σ₀ from Boltzmann

L. Fritz, J. Schmalian, MM, and S. Sachdev, condmat 0802.4289

Boltzmann equation in Born approximation

\[
\left(\partial_t + e [E + v \times B] \cdot \frac{\partial}{\partial k} \right) f_\pm (k, t) = \alpha^2 I^{Cb}_{\text{coll}} [k, t \mid \{f_\pm (k', t)\}] + \Delta I^{\text{dis}}_{\text{coll}} [k, t \mid \{f_\pm (k', t)\}]
\]

General analysis in linear response:

\[
f_\lambda (r, k, \omega) = 2\pi \delta (\omega) f^0_\lambda (k, T(r)) + f^0_{\lambda k} \left[1 - f^0_{\lambda k} \right] \frac{v_F}{T} e_k \cdot \left[eE(\omega) g^{(E)}_{\parallel,\lambda} \left(\frac{v_F k}{T}, \omega \right) + \nabla T(\omega) g^{(T)}_{\parallel,\lambda} \left(\frac{v_F k}{T}, \omega \right) \right]
\]

\[
+ f^0_{\lambda k} \left[1 - f^0_{\lambda k} \right] \frac{v_F}{T^2} (e_k \times e_z) \cdot \left[E(\omega) g^{(E)}_{\perp,\lambda} \left(\frac{v_F k}{T}, \omega \right) + \nabla T(\omega) g^{(T)}_{\perp,\lambda} \left(\frac{v_F k}{T}, \omega \right) \right]
\]
σ_Q from Boltzmann

L. Fritz, J. Schmalian, MM, and S. Sachdev, condmat 0802.4289

Boltzmann equation in Born approximation

\[
\left(\partial_t + e [E + v \times B] \cdot \frac{\partial}{\partial k} \right) f_{\pm}(k, t) = \alpha^2 I_{\text{coll}}^{cb}[k, t | \{ f_{\pm}(k', t) \}] + \Delta I_{\text{coll}}^{\text{dis}}[k, t | \{ f_{\pm}(k', t) \}]
\]

General analysis in linear response:

\[
f_{\lambda}(r, k, \omega) = 2\pi \delta(\omega) f_{\lambda}^0(k, T(r)) + f_{\lambda k}^0 \left[1 - f_{\lambda k}^0 \right] \frac{v_F}{T^2} e_k \cdot \left[e E(\omega) g_{\parallel,\lambda}^{(E)} \left(\frac{v_F k}{T}, \omega \right) + \nabla T(\omega) g_{\parallel,\lambda}^{(T)} \left(\frac{v_F k}{T}, \omega \right) \right] + f_{\lambda k}^0 \left[1 - f_{\lambda k}^0 \right] \frac{v_F}{T^2} (e_k \times e_z) \cdot \left[e E(\omega) g_{\perp,\lambda}^{(E)} \left(\frac{v_F k}{T}, \omega \right) + \nabla T(\omega) g_{\perp,\lambda}^{(T)} \left(\frac{v_F k}{T}, \omega \right) \right]
\]

Central element of analysis: Choose appropriate basis \(g_{\lambda=\pm}(k, t) = \sum_n a_n \phi_n(\lambda, k) \)

\[
\phi_0(\lambda, k) = k, \quad \text{Momentum or energy-current mode}
\]

\[
\phi_1(\lambda, k) = \lambda, \quad \text{Charge current mode}
\]
σ₀ from Boltzmann

L. Fritz, J. Schmalian, MM, and S. Sachdev, condmat 0802.4289

Boltzmann equation in Born approximation

\[
\left(\partial_t + e[E + v \times B] \cdot \frac{\partial}{\partial k} \right)f_\pm(k, t) = \alpha^2 I^{\text{coll}}_{\text{dis}}[k, t | \{f_\pm(k', t)\}] + \Delta I^{\text{dis}}_{\text{coll}}[k, t | \{f_\pm(k', t)\}]
\]

General analysis in linear response:

\[
f_\lambda(r, k, \omega) = 2\pi \delta(\omega) f^0_\lambda(k, T(r)) + f^0_\lambda \left[1 - f^0_\lambda \right] \frac{v_F}{T^2} e_k \cdot \left[eE(\omega) g^{(E)}_{\parallel, \lambda} \left(\frac{v_F k}{T}, \omega \right) + \nabla T(\omega) g^{(T)}_{\parallel, \lambda} \left(\frac{v_F k}{T}, \omega \right) \right]
\]

\[
+ f^0_\lambda \left[1 - f^0_\lambda \right] \frac{v_F}{T^2} (e_k \times e_z) \cdot \left[E(\omega) g^{(E)}_{\perp, \lambda} \left(\frac{v_F k}{T}, \omega \right) + \nabla T(\omega) g^{(T)}_{\perp, \lambda} \left(\frac{v_F k}{T}, \omega \right) \right]
\]

Central element of analysis: Choose appropriate basis \(g_{\lambda=\pm}(k, t) = \sum_n a_n \phi_n(\lambda, k) \)

\(\phi_0(\lambda, k) = k \), Momentum or energy-current mode

\(\phi_1(\lambda, k) = \lambda \), Charge current mode

\[
\sum_\lambda \int d^2k f^0_{\lambda k} (1 - f^0_{\lambda k}) \phi_{n \geq 2}(\lambda, k) \phi_{0, 1}(\lambda, k) = 0
\]

Relativistic dispersion ensures that \(\phi_0 \) only couples to \(\phi_1 \) for clean systems!
Conductivity: σ_Q

L. Fritz, J. Schmalian, MM, and S. Sachdev, condmat 0802.4289

General doping:

Clean system:

$$\sigma_{xx}(\omega; \mu, \Delta = 0) = e^2 \frac{\rho^2 v_F^2}{\varepsilon + P} \frac{1}{(-i\omega)} + \sigma_Q. $$

Precise expression for σ_Q:

$$\sigma_Q(\mu, \omega) = \frac{e^2}{\hbar} \frac{1}{\alpha^2} \frac{2 \hat{g}_1}{N} \left[I^{(1)}_+ - \frac{\rho^2 (\hbar v)^2}{(\varepsilon + P)T} \right]^2 \frac{1}{1 - i\omega \tau_{ee}}$$
Conductivity: σ_Q

L. Fritz, J. Schmalian, MM, and S. Sachdev, condmat 0802.4289

General doping:

Clean system:

$$\sigma_{xx}(\omega; \mu, \Delta = 0) = e^2 \frac{\rho^2 v_F^2}{\varepsilon + P (-i\omega)} + \sigma_Q.$$

Precise expression for σ_Q!

Gradual disappearance of relativistic physics

Will appear in all Boltzmann formulae below!
Conductivity: crossover

L. Fritz, J. Schmalian, MM, and S. Sachdev, condmat 0802.4289

General doping:

Lightly disordered system:

\[
\sigma_{xx}(\omega; \mu, \Delta) = \frac{e^2}{\tau_{\text{imp}}^{-1} - i\omega} \frac{\rho^2 v_F^2}{\epsilon + P} + \sigma_Q + \delta\sigma(\Delta, \omega, \mu)
\]

\[
\delta\sigma(\Delta, \omega, \mu) = \mathcal{O}(\Delta/\alpha^2)
\]

← Correction to hydrodynamics
Conductivity: crossover

L. Fritz, J. Schmalian, MM, and S. Sachdev, condmat 0802.4289

General doping:

Lightly disordered system:

\[\sigma_{xx}(\omega; \mu, \Delta) = \frac{e^2}{\tau_{\text{imp}}(1 - i\omega/\mu)} \rho^2 \frac{v_F^2}{\mu} + \sigma_Q + \delta\sigma(\Delta, \omega, \mu) \]

\[\delta\sigma(\Delta, \omega, \mu) = \mathcal{O}(\Delta/\alpha^2) \]

Fermi liquid regime:

\[\sigma_{xx}(\omega = 0; \mu \gg T) \approx \frac{e^2 \rho^2 v_F^2 \tau_{\text{imp}}}{\varepsilon + P} \]

\[= \frac{2}{\pi} \frac{1}{(Z\alpha)^2} \frac{e^2}{h} \frac{\rho}{\rho_{\text{imp}}} \]

\[\rho_{\text{imp}} = \rho \]

\[\rho \]

\[\rho_{\text{imp}} \]

← Correction to hydrodynamics
Conductivity: crossover

L. Fritz, J. Schmalian, MM, and S. Sachdev, condmat 0802.4289

General doping:

Lightly disordered system:

\[
\sigma_{xx}(\omega; \mu, \Delta) = \frac{e^2}{\tau_{\text{imp}}^{-1} - i\omega} + \sigma_Q + \delta\sigma(\Delta, \omega, \mu)
\]

\[
\delta\sigma(\Delta, \omega, \mu) = \mathcal{O}(\Delta/\alpha^2)
\]

← Correction to hydrodynamics

Fermi liquid regime:

\[
\sigma_{xx}(\omega = 0; \mu \gg T) \approx \frac{e^2 \rho^2 v_F^2 \tau_{\text{imp}}}{\epsilon + P}
\]

\[
= \frac{2}{\pi} \frac{1}{(Z\alpha)^2} \frac{e^2}{\hbar} \frac{\rho}{\rho_{\text{imp}}}
\]
Conductivity: crossover

L. Fritz, J. Schmalian, MM, and S. Sachdev, condmat 0802.4289

General doping:

Lightly disordered system:

\[
\sigma_{xx}(\omega; \mu, \Delta) = \frac{e^2}{\tau_{\text{imp}}^{-1} - i\omega} \left(\frac{\rho^2 v_F^2}{\varepsilon + P} \right) + \sigma_Q + \delta\sigma(\Delta, \omega, \mu)
\]

\[
\delta\sigma(\Delta, \omega, \mu) = \mathcal{O}(\Delta/\alpha^2)
\]

← Correction to hydrodynamics

Fermi liquid regime:

\[
\sigma_{xx}(\omega = 0; \mu \gg T) \approx \frac{e^2 \rho^2 v_F^2 \tau_{\text{imp}}}{\varepsilon + P}
\]

\[
= \frac{1}{\pi (Z\alpha)^2} \frac{e^2}{h} \frac{\rho}{\rho_{\text{imp}}}
\]

Impurity limited conductivity

Universal Cb limited conductivity
Magnetotransport

- **Strategy**: describe the slow dynamics of the momentum mode φ_0 in very weak disorder and moderate magnetic field
Magnetotransport

- **Strategy**: describe the slow dynamics of the momentum mode φ_0 in very weak disorder and moderate magnetic field

Result: Full thermoelectric response (for general B) obtained in terms of thermodynamic quantities + only 2 independent transport coefficients (collision matrix elements)!
Magnetotransport

- **Strategy**: describe the slow dynamics of the momentum mode φ_0 in very weak disorder and moderate magnetic field

Result: Full thermoelectric response (for general B) obtained in terms of thermodynamic quantities + only 2 independent transport coefficients (collision matrix elements)!

- At small B, one transport coefficient is subdominant
 \rightarrow Relativistic hydrodynamics with only one transport coefficient σ_Q is recovered!

\[
\tau_{ee}^{-1} \gg \tau_B^{-1}
\]

\[
\sigma_{xx}(\omega, B) = \sigma_{xx}^{\text{MHD}}(\omega, B) + \mathcal{O}(b/\alpha^2, \omega/\alpha^2)
\]

Corrections to hydrodynamics
Magnetotransport

• **Strategy:** describe the slow dynamics of the momentum mode φ_0 in very weak disorder and moderate magnetic field

Result: Full thermoelectric response (for general B) obtained in terms of thermodynamic quantities + only 2 independent transport coefficients (collision matrix elements)!

• At small B, one transport coefficient is subdominant
 \rightarrow Relativistic hydrodynamics with only one transport coefficient σ_Q is recovered!

Cyclotron resonance:

$\tau_{ee}^{-1} \gg \tau_B^{-1}$

Hydrodynamics
Boltzmann
Cyclotron resonance revisited

Crossover to Fermi liquid regime:

• Semiclassical ω_c recovered at $\mu \gg T$

• Broadening goes to zero - Kohn’s theorem recovered: Non-broadening of the resonance for a single parabolic band.

\[
\omega_c^{(0)} = \frac{\rho B}{\epsilon + P} \rightarrow \frac{eB}{\mu/v_F^2} = \frac{eB}{\hbar k_F/v_F}
\]

\[
\gamma \equiv \frac{\sigma_Q B^2 v_F^2}{(\epsilon + P)}
\]

\[
\gamma \propto \sigma_Q(\mu)^{\mu \gg T} \rightarrow 0
\]
Cyclotron resonance revisited

Beyond hydrodynamics: Towards ballistic magnetotransport

\[\mu = T \]

Large fields

\[\tau_B^{-1} > \tau_{ee}^{-1} >> \tau_{\text{imp}}^{-1}, \omega \]

Resonance

Damping
Strongly coupled liquids

Same trends as in exact (AdS-CFT) results for strongly coupled relativistic fluids!

S. Hartnoll, C. Herzog (2007)

Graphene

Resonance

Damping

\(\mathcal{N} = 4 \) SUSY SU(N) gauge theory [flows to CFT at low energy]
• Relativistic physics in graphene and quantum critical systems

• Hydrodynamic description:
 → collective cyclotron resonance in the relativistic regime
 → covariance: 6 frequency dependent response functions given by thermodynamics and *only one* parameter σ_Q.

• Boltzmann approach
 → confirmed and refined hydrodynamic description
 → understood relativistic-to-Fermi liquid crossover:
 • From universal Coulomb-limited to disorder-limited linear conductivity in graphene
 • From collective-broadened to semiclassic sharp cyclotron resonance
 → beyond hydrodynamics: describe large fields and disorder