SUPERFLUIDITY OF TRAPPED ATOMIC GASES

Sandro Stringari

Università di Trento

CNR-INFM
Bose-Einstein condensation

Bimodal distribution
(Jila 1995)

Interference (Mit 1996)
Condensate fraction and phase transition

\[k_B T_c = 0.94 \hbar \omega_{ho} N^{1/3} \]

\[N_0 / N = 1 - \left(\frac{T}{T_c} \right)^3 \]

ideal gas predictions in harmonic trap:
\(T_c = \) fraction of microKelvin

\[V_{ext} = \frac{1}{2} m \omega_{ho} r^2 \]

Exp data: Jila 1996
What is new with BEC in trapped atomic gases?

- Bose-Einstein condensation
 in both momentum and coordinate space
- Diluteness (Gross-Pitaevskii eq. for order parameter)

New important knobs available
(in addition to temperature, density, angular velocity)

- tuning of scattering length
 (BEC-BCS crossover in Fermi superfluids)
- flexible trapping conditions (anisotropy of harmonic trapping, optical lattices, 1D and 2D configurations)
- **Hydrodynamic** behavior at $T=0$ (irrotationality)
- Quenching of **moment of inertia**
- **Quantized vortices**
- **Josephson** oscillations
- Absence of **viscosity** (Landau’s critical velocity)

Furthermore, in **Fermi** gases
- **Pairing gap** (single particle excitations)
- **Phase separation** in the presence of polarization
T=0 HYDRODYNAMICS

- BOGOLIUBOV SOUND
- COLLECTIVE OSCILLATIONS
- ANISOTROPIC EXPANSION
Bogoliubov sound
(wave packet propagating in a BEC, Mit 97)

sound velocity as a function of central density
Collective oscillations at T=0
(axial compression mode in BEC)

Exp (Mit, 1997) \[\omega = 1.57\omega_z \]

HD Theory (Trento, 1996): \[\omega = \sqrt{5/2} \omega_z = 1.58\omega_z \]
Hydrodynamics predicts anisotropic expansion of the superfluid
(Kagan, Surkov, Shlyapnikov 1996; Castin, Dum 1996,
Rotational effects

Superfluids rotate differently from classical fluids (due to irrotationality constraint)

At low angular velocities moment of inertia is quenched (consequences on scissors mode)

Quantized vortices are formed at higher angular velocity
Direct measurement of moment of inertia difficult because images of atomic cloud probe *density* distribution (*not* *velocity* distribution)

In deformed traps *rotation* is however *coupled* to *density* oscillations. Exact relation, holding also in the presence of 2-body forces:

$$[H, L_z] = i m (\omega_y^2 - \omega_x^2) \sum_i x_i y_i$$

↑

angular momentum

↑

quadrupole operator

Response to *transverse* probe measurable through *density* response function !!

Example of coupling is provided by *scissor mode*. If confining (deformed) trap is suddenly rotated by angle θ the gas is no longer in equilibrium. Behaviour of resulting oscillation depends crucially on value of moment of inertia (*irrotational* vs *rigid*)
Theory of scissors mode
(Guery-Odelin and S.S., PRL 83 4452 (1999))

Scissors measured at Oxford
(Marago’et al, PRL 84, 2056 (2000))

Above T_C (normal)
2 modes: $\omega_{\pm} = |\omega_x \pm \omega_y|$

Below T_C (superfluid) :
single mode: $\omega = \sqrt{\omega_x^2 + \omega_y^2}$
Quantized vortices

Superfluids carry angular momentum through quantized vortices

Quantized vortices are **macroscopic** configurations described by order parameter

\[\Psi = \Psi_V e^{i\phi} \]

Circulation of velocity is **quantized**. Quantum of circulation: \(\frac{h}{m} \)

Equation for the order parameter: **Gross-Pitaevskii** (1961). Describes the condensate at the scale of the **healing length**
Vortex detection in Bose-Einstein condensed gases

Size of vortices is of order of healing length (< 1 micron), Cannot be resolved in situ. Visibility emerges after expansion.

Good agreement between measured (Madison et al. 2000) and calculated (Dalfovo & Modugno, 2000) density profiles after expansion.

GP eq

Vortices at ENS Chevy, 2001
Spectroscopic measurement of angular momentum

Splitting between $m=+2$ and $m=-2$ quadrupole frequencies proportional to angular momentum (Zambelli and Stringari, 1999)

$$
\omega_+ - \omega_- = \frac{2}{M} \frac{\langle l_z \rangle}{\langle r_{\perp}^2 \rangle}
$$

Measurement of angular momentum in BEC’s (Chevy et al., 2000)

![Graph showing the relationship between stirring frequency and L_z/k for different vortex states.]

- no vortices
- one vortex
- multiple vortices
- turbulent
Vortex lattices

By increasing angular velocity one can nucleate more vortices (vortex lattice)

Vortices form a regular triangular lattice (cfr Abrikosov lattice in superconductors)

Tkachencko (elastic) waves in a BEC vortex lattice

(Jila 2002)

(Jila 2003)
JOSEPHSON OSCILLATIONS

Double well
(Heidelberg 2004)

Periodic potential
(Firenze 2001)

Only superfluid coherently tunnels through the barrier
LOCALIZATION: enemy of BEC and superfluidity:
- deep optical lattice (superfluid-Mott transition)
- disorder (Anderson localization)

Superfluid to Mott Insulator transition
(Greiner et al. Nature 2002)
Anderson localization in almost non interacting Bose gas produced by laser speckles (Institute d’Optique, Palaisseau) and quasi-periodic optical potentials (Lens, Firenze) (Nature 2008, June 12 !)

1D expansion

- no quasi-periodicity
- high quasi-periodicity
s-wave FERMI SUPERFLUIDITY and BCS-BEC CROSSOVER

Interaction between fermions in two different hyperfine states described by s-wave scattering length.

- Availability of Feshbach resonances permits to reach favourable conditions for superfluidity

- BCS-BEC crossover (Eagles, Leggett, Nozieres-Schmitt Rink, Randeria,)

\[
\begin{align*}
\text{BEC} & \quad \text{unitarity} \quad \text{BCS} \\
\text{(molecules)} & \quad \text{(Cooper pairs)}
\end{align*}
\]

\[
\frac{T}{T_F}
\]

\[
-1 \quad -1/kFa \quad 1
\]
Pairs of fermions forms dimers and dimers give rise to BEC

Bose-Einstein condensation emerging from the Fermi sea

Jila 2003: (see also Mit, Innsbruck, ENS, Rice)
How do dimers interact with dimers? How do dimers interact with atoms?

Theory:

- **dimer-atom** $a_{bf} = 1.2a$

 (Skorniakov and Terr-Martirosian 1957)

- **dimer-dimer** $a_{bf} = 0.6a$

 (Petrov, Salomon and Shlyapnikov 2004)

Exp determination from density profile of polarized Fermi gases

Shin et al. (Mit 2008)
Unitary Fermi gas (1/a=0): main features

- **diluteness**
 (interparticle distance >> range of interaction)

- **strong interactions**
 (scattering length >> interparticle distance)

- **universality**
 (no dependence on interaction parameters)

- **robust superfluidity** (high critical velocity)

- **high Tc**
 (of the order of Fermi temperature)

<table>
<thead>
<tr>
<th>Material</th>
<th>Tc (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional superconductors</td>
<td>10^{-5}-10^{-4}</td>
</tr>
<tr>
<td>Superfluid He3</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>High-temperature superconductors</td>
<td>10^{-2}</td>
</tr>
<tr>
<td>Fermi gases with resonant interactions</td>
<td>0.2</td>
</tr>
</tbody>
</table>
The quest for superfluidity in Fermi gases

Some examples:

- collective oscillations and eq. of state
- Landau’s critical velocity
- spin polarization
- **Surface** modes: unaffected by equation of state

- **Compression** modes sensitive to equation of state. Hydrodynamic theory of superfluids predicts **universal value** $\omega_{rad} = \sqrt{10/3}\omega_r$ at unitarity $(1/a=0)$ for radial compression mode in elongated trap (Stringari 2004)
Breathing mode in elongated Fermi superfluids

Exp: Altmeyer et al. (Innsbruck)
Theory: Hydrodynamics with Monte Carlo eq. of state

MC equation of state (Astrakharchick et al., 2005)
- Includes Lee-Huang-Yang correlations
- **BCS eq. of state** (Hu et al., 2004)
 - does not include quantum correlations

Measurement of collective frequencies provides accurate test of equation of state!!
Landau’s critical velocity

\[v_{cr} = \min_p \frac{\varepsilon(p)}{p} \]

Dispersion law of elementary excitations

- **Landau’s criterion for superfluidity** (*metastability*): fluid moving with velocity **smaller** than critical velocity cannot decay (**persistent current**)

- Ideal Bose gas and ideal Fermi gas one has \(v_{cr} = 0 \)

- In interacting Fermi gas one predicts two limiting cases:

 BEC (Bogoliubov dispersion)

 \[v_{cr} = c \propto \sqrt{a} \quad \text{(sound velocity)} \]

 BCS (role of the gap)

 \[v_{cr} = \frac{\Delta}{p_F} \propto \exp\left(\frac{\pi}{2k_F a}\right) \]
Dispersion law along BCS-BEC crossover

(R. Combescot, M. Kagan and S. Stringari 2006)
Landau’s critical velocity

theory

Experiment (Miller et al. 2007)

Landau’s critical velocity is highest near unitarity!!
Above critical velocity dissipative effect produced by moving optical lattice is observed.

(Mit, Miller et al, 2007)
Differently from BEC’s phase separation is not easily observed by imaging density profiles of Fermi gas (bimodal distribution is absent at unitarity as well as in BCS).

Phase separation can be nevertheless observed in spin polarized samples.
Occurrence of phase separation in spin polarized Fermi gas observed experimentally at unitarity (see also Rice exp)

Density difference $n_\uparrow - n_\downarrow$

(Phase contrast imaging, MIT 2006)

In superfluid phase $n_\uparrow = n_\downarrow$

In polarized normal phase $n_\uparrow > n_\downarrow$
Interactions in normal phase play a crucial role in determining critical polarization.
Example: neglecting interactions in normal phase yields $P_C \approx 1$.
Density jump at the interface ($1/a=0$)

Spin up density practically continuous at the interface

Spin down density exhibits jump at the interface

Exp: MIT (Shin et al. 2007)
Theory: Trento (Lobo et al. 2006)

Based on MC equations of state for superfluid and polarized normal phase
Theory predicts critical polarization in excellent agreement with exps
MAIN CONCLUSION

• TRAPPED ATOMIC GASES: WELL SUITED TO EXPLORE THE EFFECTS OF SUPERFLUIDITY

• IMPORTANT RECENT ADVANCES IN FERMI SUPERFLUIDITY
Main collaborators in Trento

Franco Dalfovo

Theory of Bose-Einstein condensation in trapped gases
F. Dalfovo et al.
Rev. Mod. Phys, 71, 463 (1999)

Stefano Giorgini

Theory of ultracold atomic Fermi gases
S. Giorgini et al.
Rev. Mod. Phys, in press (2008)
cond-mat/0706.3360

Lev Pitaevskii