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Bose-Einstein condensation

Bimodal distribution 
(Jila 1995)

Interference (Mit 1996)



Condensate fraction 
and phase transition
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What is new with BEC in trapped atomic gases ?

- Bose-Einstein condensation 
in both momentum and coordinate space

- Diluteness (Gross-Pitaevskii eq. for order parameter)

New important knobs available
(in addition to temperature, density, angular velocity)

- tuning of scattering length
(BEC-BCS crossover in Fermi superfluids) 

- flexible trapping conditions (anisotropy of harmonic
trapping, optical lattices, 1D and 2D configurations)



- Hydrodynamic behavior at T=0 (irrotationality)
- Quenching of moment of inertia
- Quantized vortices
- Josephson oscillations
- Absence of viscosity (Landau’s critical velocity)
……..

Furthermore,  in Fermi gases
- Pairing gap (single particle excitations)
- Phase separation in the presence of polarization

SUPERFLUIDITY in trapped atomic gases



T=0 HYDRODYNAMICS

• BOGOLIUBOV SOUND

• COLLECTIVE OSCILLATIONS

• ANISOTROPIC EXPANSION



Bogoliubov sound 
(wave packet propagating in a BEC, Mit 97 )

10

5

0

86420

sound velocity as a function
of central densityBbbbb



Collective oscillations at T=0               
(axial compression mode in BEC)

Exp (Mit, 1997)

HD Theory (Trento, 1996): 
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Hydrodynamics predicts anisotropic

expansion of the superfluid
(Kagan, Surkov, Shlyapnikov 1996; Castin, Dum 1996,  



Rotational effects

Superfluids rotate differently from classical fluids
(due to irrotationality constraint)

At low angular velocities moment of inertia is quenched
(consequences on scissors mode)

Quantized vortices are formed at higher angular velocity



Scissors mode

Direct measurement of moment of inertia difficult because images
of atomic cloud probe density distribution (not velocity distribution)

In deformed traps rotation is however coupled to density oscillations.
Exact relation, holding also in the presence of 2-body forces: 
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angular momentum quadrupole operator

Example of coupling is provided by scissor mode .
If confining (deformed) trap is suddenly rotated by
angle       the gas is no longer in equilibrium. 
Behaviour of resulting oscillation depends crucially
on value of moment of inertia (irrotational vs rigid )

θ

Response to transverse probe measurable
thorugh density response function !!



Theory of scissors mode
(Guery-Odelin and S.S., PRL 83 4452 (1999))

Scissors measured at Oxford 
(Marago’et al, PRL 84, 2056 (2000))

Above (normal)                

2 modes:

CT

yx ωωω ±=±

Below (superfluid) :         
single mode:
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Quantized vortices

Quantized vortices are macroscopic configurations
described by order parameter

ϕi
V eΨ=Ψ

azimuthal angle

Superfluids carry angular momentum
through quantized vortices

Circulation of velocity is quantized . Quantum of circulation: h/m

Equation for the order parameter: Gross-Pitaevskii (1961).
Describes the condensate at the scale of the healing length



Vortex detection in Bose-Einstein condensed gases

Size of vortices is of order of 
healing length (< 1 micron), 
Cannot be resolved in situ . 
Visibility emerges after expansion

Good agreement between
measured (Madison et al. 2000) and 
calculated (Dalfovo & Modugno, 2000)
density profiles after expansion

Vortices at ENS
Chevy, 2001

GP eq



Spectroscopic measurement of 
angular momentum

Splitting between
m=+2 and m=-2 
quadrupole frequencies
proportional to 
angular momenetum
(Zambelli and Stringari,1999)
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Measurement of 
angular momentum
in BEC’s
(Chevy et al., 2000)



Vortex lattices

By increasing angular velocity one can nucleate more vortices (vortex lattice)

Vortices form a regular 
triangular lattice
(cfr Abrikosov lattice
In superconductors)

(Jila 2002)

Tkachencko (elastic) waves
In a BEC vortex lattice

(Jila 2003)



JOSEPHSON OSCILLATIONS

Double well
(Heidelberg 2004)

Only superfluid
coherently tunnels 
through the barrier

Periodic potential
(Firenze 2001)



Superfluid
to Mott
Insulator
transition
(Greiner et al. 
Nature 2002)

LOCALIZATION: enemy of BEC and superfluidity:
- deep optical lattice (superfluid-Mott transition)
- disorder (Anderson localization)



Anderson localization in almost non interacting Bose gas
produced bylaser speckles (Instute d’Optique, Palaiesau)
andquasi-periodic optical potentials (Lens, Firenze)

(Nature 2008, June 12 !)

no 
quasi-periodicity

high
quasi-periodicity

1D expansion



s-wave FERMI SUPERFLUIDITY
and BCS-BEC CROSSOVER

• Availability of 
Feshbach resonances
permits to reach
favourable conditions
for superfluidity

• BCS-BEC crossover
(Eagles, Leggett, 
Nozieres-Schmitt Rink,  
Randeria,)
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BEC 
(molecules)

BCS 
(Cooper pairs)
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Interaction between fermions in two different hyperfine states 
described by s-wave scattering length .

unitarity



Bose-Einstein condensation 
emerging from the Fermi sea

Pairs of fermions forms dimers and dimers give rise to BEC

Jila 2003: 
(see also Mit, 
Innsbruck, 
ENS, Rice)



How do dimers interact with dimers ?
How do dimers interact with atoms ?

Exp determination
from density profile of                                                     
polarized Fermi gases

Shin et al.(Mit 2008)                                           

Theory:

dimer-atom
(Skorniakov and Terr-Martirosian1957)  

dimer-dimer
(Petrov, Salomon and Shlyapnikov 2004)
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Unitary Fermi gas (1/a=0): main features

- diluteness
(interparticle distance >> range of inetraction)

- strong interactions
(scattering length >> interparticle distance)

- universality
(no dependence on interaction parameters)

- robust superfluidity (high critical velocity)

- high Tc
(of the order of 
Fermi temperature

Conventional superconductors 10(-5)-10(-4)

Superfluid He3                                             10(-3)                                             

High-temperature superconductors 10(-2)

Fermi gases with resonant interactions          0.2



The quest for superfluidity
in Fermi gases

Some examples:

- collective oscillations and eq. of state
- Landau’s critical velocity
- spin polarization



- Surface modes: unaffected by equation of state 

- Compression modes sensitive to equation of state.
Hydrodynamic theory of superfluids predicts
universal value at unitarity (1/a=0) 
for radial compression mode in elongated trap
(Stringari 2004)

COLLECTIVE OSCILLATIONS 
IN SUPERFLUID PHASE (T=0)
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Breathing mode in elongated Fermi superfluids
Exp: Altmeyer et al. (Innsbruck)

Theory: Hydrodynamics with Monte Carlo eq. of state

MC equation of state (Astrakharchick et al.,  2005)

BCS eq. of state
(Hu et al., 2004)

3/10

Includes
Lee-Huang-Yang correlations

does not includes 
quantum correlations

universality !

Measurement of collective frequencies
provides accurate test of  equation of state !!

akF
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Landau’s critical velocity
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- Landau’s criterion for superfluidity (metastability ):
fluid moving with velocity smaller than critical velocity cannot decay
(persistent current )  

- Ideal Bose gas and ideal Fermi gas one has 

- In interacting Fermi gas one predicts two limiting cases:

Dispersion law of 
elementary excitations

BEC (Bogoliubov dispersion)

acvcr ∝=

BCS (role of the gap)

)2/exp(/ akpv FFcr π∝∆=(sound velocity)

0=crv



BEC

BEC

unitarity
gap

gap

(R. Combescot, M. Kagan and S. Stringari 2006)

Dispersion law along BCS-BEC crossover

BCS

gap



Landau’s critical velocity
is

highest near unitarity !!
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Above critical velocity dissipative effect produced
by moving optical lattice is observed

Measurement of Landau’s critical velocity

(Mit, Miller et al, 2007)



Differently from BEC’s
phase separation is not easily observed
by imaging density profiles of Fermi gas

(bimodal distribution is absent 
at unitarity as well as in BCS

Phase separation can be nevertheless
observed in spin polarized samples

Spin polarized Fermi superfluids
↓↑ ≠ NN



Density difference
(phase contrast imaging, MIT 2006)

In  superfluid phase 

In polarized normal phase                      

↓↑ = nn

↓↑ > nn

↓↑ − nn

Occurrence of phase separation in spin polarized Fermi gas
observed experimentally at unitarity (see also Rice exp)
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Phase diagram of uniform matter at T=0

Interactions in normal phase play a crucial role in 
determining critical polarization.
Example: neglecting interactions in normal phase
yields

Chandrasekher-Clogston
limit at unitarity
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Density jump at the interface (1/a=0)

Exp: MIT (Shin et al. 2007)
Theory: Trento (Lobo et al.2006)

Spin up density practically
continuous at the interface

Spin down density exhibits
jump at the interface

Based on MC equations of state for superfluid and polarized normal phase
Theory predicts critical polarization in excellent agreement with exps



MAIN CONCLUSION

• TRAPPED ATOMIC GASES: WELL 
SUITED TO EXPLORE THE EFFECTS 
OF SUPERFLUIDITY 

• IMPORTANT RECENT ADVANCES IN
FERMI SUPERFLUIDITY
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